
Towards a Uni�ed Framework for Randomized Pivoting

Algorithms in Linear Programming

L. Finschi, Eidgen�ossische Technische Hochschule Z�urich

K. Fukuda, Eidgen�ossische Technische Hochschule Z�urich

H.-J. L�uthi, Eidgen�ossische Technische Hochschule Z�urich

Summary: We study linear programming (LP) algorithms. Of particular interest are bounds

for the number of elementary arithmetic operations necessary to solve a linear program. The best

bounds that depend only on the sizes of a basis and a nonbasis have been found for a family of

randomized pivoting algorithms. However, the original descriptions and analyses of these algorithms

use several di�erent geometric and abstract settings. In this paper we present a uni�ed framework in

which we describe two known algorithms as special simplex methods and analyse their complexities

and di�erences.

1. Introduction

A linear programming (LP) problem is to �nd a maximizer (or minimizer) of a linear function over a

system of linear inequalities. We study LP algorithms and upper bounds for the number of elementary

arithmetic operations necessary to solve LP problems; for this we assume that each operation can

be performed in constant time. In particular we are interested in bounds that depend only on the

size m of a basis and the size n of a nonbasis. To �nd an LP algorithm that is polynomial in m and

n | usually this is called strongly polynomial | is one of the most challenging open questions.

The simplex method of Dantzig [2] and also the algorithms of Kachiyan [9] and Karmarkar [8] do not

satisfy this condition. New algorithms with complexity bounds in terms of m and n were introduced

by Megiddo [11], Seidel [13], and others, but the dependence on n remained exponential. In 1992

Sharir and Welzl [14] and also Kalai [6] presented randomized algorithms which turned out | after

proofs �rst of Kalai and then of Matou�sek, Sharir, and Welzl [10] | to have a socalled subexponential

expected running time. The proofs rely on similar ideas, whereas the descriptions of these algorithms

use very di�erent frameworks.

Our main motivation is to understand the Sharir-Welzl algorithm (here abbreviated by MSW) and

Kalai's algorithm as pivoting algorithms so that we can consider them as re�nements of the simplex

method and compare them with any other pivoting algorithm on the same ground. In 1995 Gold-

wasser [5] showed that MSW and some variant of Kalai's algorithms are dual to each other. Kalai

[7] claimed in 1997 that another variant of his algorithms and MSW are equivalent in a dual setting.

This paper compares these last two algorithms in our framework and shows that their behaviors

are slightly di�erent. The main importance is not the di�ence we found but the simplicity and the

preciseness of our framework that permit rigorous analysis and even straightforward implementations.

2. The Framework: Dictionaries and Oracles

For a rigorous treatment, we present in this section the de�nitions and notations which we use for the

description of the algorithms in the following sections. The reader who is familiar with dictionaries



and pivot operations may directly go to Section 3..

2.1 Dictionaries and Pivot Operation

For two �nite and nonempty sets R and C an R�C-matrix M consists of the entries M

ij

for i 2 R,

j 2 C. For nonempty subsets I � R, J � C we denote the submatrix corresponding to the entries

M

ij

for i 2 I, j 2 J by M

IJ

. We set M

I

:= M

IC

, M

�J

:= M

RJ

, and M

i

:= M

fig

etc.

We assume without loss of generality that an LP problem is given in the following dictionary form:

maxx

f

subject to x

B

= Dx

N

; x

g

= 1; x

E

� 0; (1)

where D is a given rational B � N -matrix for index sets B = B [ ffg and N = N [ fgg, and

E = B [N ; x is a variable E-vector, where E = B [N . D = D(B) is called the dictionary, B and

N the corresponding basis and nonbasis, respectively; we set m := jBj and n := jN j.

We consider a linear program P as given by (1). For i 2 B, j 2 N holds: We can �nd a dictionary

form of P with basis B n fig [ fjg if and only if D

ij

6= 0. The replacement of B by B n fig [ fjg for

D

ij

6= 0 is called the pivot operation on (i; j). The pair (i; j) is called the pivot. The new dictionary

~

D = D(B n fig [ fjg) after a pivot operation on (i; j) can be computed in time O(mn).

We remark that the dictionary form of the dual linear program is

max y

g

subject to y

N

= �D

T

y

B

; y

f

= 1; y

E

� 0:

Compared with the primal dictionary form (1), basis and nonbasis variables interchange, in particular

f and g interchange, and the dual dictionary of D is �D

T

.

A rational E-vector x is called a basic solution (of P ), if there exists a basis B of P such that x

N

= 0

and x

g

= 1 (and then x

B

= D

�g

). We call this x = x(B) the basic solution corresponding to B. In

order to �nd the optimal solution we have only to visit the basic solutions: If there exists an optimal

solution of P , then there also exists an optimal solution of P which is a basic solution.

For a linear program P given as in (1) and for R � E the contraction problem of P with respect

to R is de�ned as P with additional constraints x

R

= 0 and denoted by P=R. If R � N we can

write P=R in the form (1) by substituting D

�NnR

for the dictionary (i.e. we delete the columns R

in the dictionary D). The value x

f

of an optimal solution x of P=R is denoted by v(P=R); if P=R

is infeasible we set v(P=R) := �1, if P=R is unbounded we set v(P=R) := +1. We will use the

obvious extension of the linear order on the real numbers to �1 and +1.

De�nition 1 (Properties of a Dictionary) A dictionary D = D(B) is called feasible if D

Bg

� 0,

inconsistent if exists i 2 B such that D

ig

< 0 and D

iN

� 0, and degenerate if exists i 2 B such that

D

ig

= 0. We call D dual feasible, dual inconsistent, or dual degenerate if the dual dictionary �D

T

is

feasible, inconsistent, or degenerate, respectively.

The dictionary is called optimal if it is feasible and dual feasible, unbounded if it is feasible and

dual inconsistent, terminal if it is optimal or inconsistent or dual inconsistent, and it is called nearly

optimal w.r.t. j 2 N if it is not optimal and if D

�Nnfjg

is optimal.

We call a linear program P nondegenerate if all feasible dictionaries are nondegenerate; there is an

obvious dual notion of this de�nition. Remark the correspondences between a dictionary D(B) and

the basic solution x(B).



De�nition 2 (Simplex Pivot) Consider a feasible dictionary D. We call (i; j) a simplex pivot if

D

fj

> 0, and D

ij

< 0 and if after a pivot operation on (i; j) the new dictionary

~

D is feasible.

By a pivot operation on a simplex pivot (a simplex pivot operation) the objective value does not

decrease (D

fg

�

~

D

fg

). If D is nondegenerate, the objective value increases (D

fg

<

~

D

fg

). There

exists a simplex pivot (i; j) in D if and only if D is not terminal.

2.2 Oracles for Dictionaries

We will use the following oracles which re
ect properties of the sign structure of dictionaries:

� The value of Terminal(D;R) is True if the dictionary D is terminal for the contraction

problem P=R (i.e. if D

�NnR

is terminal), otherwise False.

� The value of NearlyOptimal(D;R) is (True, j) if the dictionary D

�NnR

is nearly optimal

w.r.t. j 2 N , otherwise (False, ;).

� For a feasible and not terminal dictionary D and j 2 N such that D

fj

> 0, the value of

Pivot(D; j) is a dictionary after an operation on a simplex pivot (i; j) in the given column

(this simplex pivot is unique for nondegenerate linear programs). For input (D; j) that does

not satisfy the above requirements the value of the oracle is the given dictionary D.

In a usual implementation the running time of these oracles will be O(mn), O(m+ n), and O(mn).

3. The Algorithms

3.1 Preparation: Simplex Algorithm

The algorithms we will discuss in the following are variants of the primal simplex algorithm which

is reviewed here in dictionary notation. We use the oracles of Subsection 2.2.

Algorithm Simplex:

Input: A feasible dictionary D, de�ning a linear program P as in (1).

Output: A terminal and feasible dictionary D

�

for P , i.e. D

�

is either optimal or unbounded.

Simplex(D)

begin

while not Terminal(D; ;) do

choose any pivot column j 2 N such that D

fj

> 0;

D := Pivot(D; j)

endwhile;

return D

end.

In the following algorithms the choice of the pivot column will be given by randomized rules based

on the sign pattern of the dictionaries.



3.2 Algorithms and Main Results

We present in this subsection an algorithm of Matou�sek, Sharir, Welzl [10] and an algorithm of Kalai

[7] with the main complexity theorems. The proofs are given in Section 4.. The two algorithms are

called here MSW and Kalai and work with a feasible starting dictionary and for nondegenerate

linear programs.

We present MSW as a primal simplex algorithm (so dualized compared to the original algorithm):

Algorithm MSW:

Input: A feasible dictionary D de�ning a nondegenerate linear program P , a set R � N .

Output: A terminal and feasible dictionary D

�

for P=R, i.e. D

�

is either optimal or unbounded for

P=R.

MSW(D;R)

begin

if R = N then return D

else

choose e 2 N nR at random;

~

D := MSW(D, R [ feg);

if Terminal(

~

D;R) then return

~

D

else

^

D := Pivot(

~

D; e);

return MSW(

^

D;R)

endif

endif

end.

Theorem 3 (Analysis of MSW) The expected number of pivot operations that are generated by

MSW(D; ;) is at most e

4�

p

m ln(n+1)

. The algorithm is �nite and terminates with correct output.

Here is our description of Kalai's algorithm:

Algorithm Kalai:

Input: A feasible dictionary D de�ning a nondegenerate linear program P , a set R � N .

Output: A terminal and feasible dictionary D

�

for P=R, i.e. D

�

is either optimal or unbounded for

P=R.



Kalai(D;R)

begin

if Terminal(D;R) then return D

elseif jN nRj = 1 (with N nR = feg) then

~

D := Pivot(D; e);

return

~

D

else

(v; ~e) := NearlyOptimal(D;R);

if v = True then

choose e 2 (N nR) n f~eg at random;

else choose e 2 N nR at random;

endif;

^

D := Kalai(D, R [ feg);

return Kalai(

^

D;R)

endif

end.

Theorem 4 (Analysis of Kalai) The expected number of pivot operations that are generated by

Kalai(D; ;) is for n > 0 at most e

4�

p

(m+n) lnn

+ 1; for n = 0 there is no pivot operation generated.

The algorithm is �nite and terminates with correct output.

Both algorithms are indeed variants of the simplex algorithm: Obviously there will be some sequence

of simplex pivot operations, and the algorithms will return a dictionary which is terminal for P=R

if they terminate (observe that in both algorithms the argument of any return statement either is

a dictionary which is terminal for P=R or a recursive call with the same contraction set R).

4. Discussion of the Algorithms

4.1 Analysis of MSW

We discuss in this subsection the algorithm of Matou�sek, Sharir, Welzl MSW. The analysis is the

same as in the original paper [10], but instead of the notation of socalled LP-type optimization

problems we use the setting of dictionaries (see Subsection 2.1) and oracles (see Subsection 2.2).

We write v(R) instead of v(P=R). Given a linear program P , a nonbasis N of P , and R � E, then

e 2 E is called active with respect to (N;R) if v(R [ feg) � v(N). The set of all active constraints

is denoted by A(N;R), and its cardinality by a

N;R

:= jA(N;R)j. This de�nition has the following

relation to the corresponding de�nition of enforcing constraints from the original MSW paper [10]:

e enforcing in (R;B) if and only if e 62 A(N;R). The following two monotonicity relations hold:

S � R ) A(N; S) � A(N;R), and v(

~

N) � v(N) ) A(

~

N;R) � A(N;R). For R � N we have

N � A(N;R) and hence n � a

N;R

.



De�nition 5 (E(D;R) and �(k; `)) A callMSW(D;R) will generate a (�nite or in�nite) sequence

of pivot operations, where a certain sequence is chosen according to the probability distribution

implicitly de�ned by the algorithm. In the same way the length of such a sequence is probabilistic.

We denote by E(D;R) the expected number of pivot operations generated byMSW(D;R). For k � 0

and ` � 0 let �(k; `) denote the smallest upper bound for E(D;R) for all feasible dictionaries D that

de�ne a nondegenerate linear program and all R � N such that a

N;R

� n+ k and jN nRj = `.

Lemma 6 The function � holds:

(i) For any k � 0: �(k; 0) = 0.

(ii) For any ` � 0: �(0; `) = 0.

(ii) For any k � 1; ` � 1: �(k; `) � �(k; `� 1) +

1

`

min(k;`)

P

j=1

(1 + �(k � j; `)).

Proof (Outline):

(i) ` = 0 implies R = N , so there will be no pivot: E(D;R) = 0 and hence �(k; 0) = 0.

(ii) D = D(B) is terminal for P=R, since otherwise n < a

N;R

in contradiction to k = 0.

(iii) We order the elements in N n R = fe

1

; : : : ; e

`

g such that v(R [ fe

1

g) � : : : � v(R [ fe

`

g).

We choose with probability

1

`

an element e = e

j

2 N \ R. Then we compute recursively

~

D = MSW(D;R [ feg) with an expected number of E(D;R [ feg) pivot operations which

is at most �(k; ` � 1). If

~

D is terminal there are no more pivot operations, otherwise we

make one simplex pivot to

^

D and recursively compute MSW(

^

D;R) which causes together

the expected number of 1 + E(

^

D;R) pivot operations. We show that E(

^

D;R) � �(k � j; `):

Monotonicity of the simplex pivots implies v(N) < v(

^

N) and hence A(

^

N;R) � A(N;R); for

i � j is e

i

2 A(N;R) n A(

^

N;R); i.e. a

^

N;R

� a

N;R

� j � n + k � j. n � a

^

N;R

implies j � k, so

we have to extend the sum of all possible cases not further than min(k; `).

2

Theorem 7 For any k � 0; ` � 0: �(k; `) � e

4�

p

k ln(`+1)

.

Proof: The inequality holds for any function � with the properties as in Lemma 6. For a proof see

[10], Proposition 5 (the function �

MSW

there is � + 1). 2

Proof of Theorem 3: Remark that a

N;;

� m+n, hence the bound �(m;n) is valid for any linear

programs with m = jBj, n = jN j for a call of MSW(D; ;). We prove the �niteness and correctness

according to the recursion of the algorithm and use induction in k+`. Let B(k; `) denote the maximal

number of pivot operations for any linear program with k and ` as de�ned for �(k; `). As in the

proof of Lemma 6 we can show: For any k � 0: B(k; 0) = 0; for any ` � 0: B(0; `) = 0; for any

k � 1; ` � 1: B(k; `) � B(k; ` � 1) + B(k � 1; `) + 1. We easily prove B(k; `) � 2

k+`

� 1. The

correctness of the algorithm is now trivial. 2



4.2 Analysis of Kalai

In 1992 Kalai [6] presented three algorithms S

0

; S

1

; S

2

; Goldwasser [5] showed in 1995 that a certain

variant of S

0

is dual toMSW. In an article from 1997 Kalai [7] describes two new variantsAlgorithm

I and Algorithm II and claims (without proof) that Algorithm I \is equivalent (in a dual-setting)

to the Sharir-Welzl algorithm" of [14] which is exactly the same as the MSW algorithm of [10].

Kalai's Algorithm I is the origin of the algorithm Kalai which is investigated in this subsection.

We will compare Kalai with MSW in Subsection 4.3 with the result that the two algorithms are

slightly di�erent.

Kalai's Algorithm I is not a complete algorithm. One di�culty is that Kalai describes some

algorithmic steps without giving the order of their execution in the algorithm. Another weakness of

the description is the missing de�nition of the trivial case of the recursion. Above all, there is no

pivot operation explicitly declared. We tried to solve these problems in a most natural way. This

leads to the form ofKalai. We remark that also for some other forms of Kalai's algorithm the results

of Subsection 4.3 hold.

We write v(R) instead of v(P=R). Given a linear program P , a nonbasis N of P , and R � E, then

e 2 E is called strongly active with respect to (N;R) if v(R [ feg) > v(N) and e 62 R. The set of all

strongly active constraints is denoted by

~

A(N;R) and its cardinality by ~a

N;R

:= j

~

A(N;R)j. We remark

that the above de�nition is the same as the de�nition of an active constraint in Kalai's paper [7].

The monotonicity relations S � R )

~

A(N; S) �

~

A(N;R) and v(

~

N) � v(N))

~

A(

~

N;R) �

~

A(N;R)

hold.

De�nition 8 (

~

E(D;R) and

~

�(k; `)) We denote by

~

E(D;R) the expected number of pivot operations

generated by Kalai(D;R) (analogous to E(D;R) of De�nition 5). For k � 0 and ` � 1 let

~

�(k; `)

denote the smallest upper bound for

~

E(D;R) for all feasible dictionariesD that de�ne a nondegenerate

linear program and all R � N such that ~a

N;R

� k and jN nRj = `.

Lemma 9 The function

~

� holds:

(i) For any k � 1:

~

�(k; 1) � 1.

(ii) For any ` � 1:

~

�(0; `) = 0.

(iii) For any k � 1; ` � 2:

~

�(k; `) �

~

�(k � 1; `� 1) +

1

`�1

min(k;`�1)

P

j=1

~

�(k � j; `).

Proof (Outline):

(i) Either D is terminal and then there is no pivot operation, or we have a problem of dimension

1 which will be solved with one simplex pivot:

~

E(D;R) � 1 and hence

~

�(k; 1) � 1.

(ii) k = 0 implies ~a

N;R

= 0, and then D = D(B) is terminal for R (since otherwise 0 < ~a

N;R

).

(iii) We order the elements in N n R = fe

1

; : : : ; e

`

g such that v(R [ fe

1

g) � : : : � v(R [ fe

`

g).

If D is terminal for R then there is no pivot operation. Since ` � 2 the case jN n Rj = 1



is not possible. If D is not terminal for R then we have to distinguish two cases: When the

dictionary D is nearly optimal with redundant constraint ~e 2 N , then ~e = e

1

and we choose

with probability

1

`�1

an element e = e

j

for some j 2 f2; : : : ; `g; recursion leads (similarly to

the analysis of MSW) to the inequality

~

�(k; `) �

~

�(k � 1; `� 1) +

1

`�1

min(k;`�1)

P

j=1

~

�(k � j; `). In

the case that D is not nearly optimal we choose with probability

1

`

an element e = e

j

for some

j 2 f1; : : : ; `g, and we will obtain the inequality

~

�(k; `) �

~

�(k� 1; `� 1) +

1

`

min(k;`)

P

j=1

~

�(k � j; `).

Since according to the de�nition of

~

� for i � j holds

~

�(k � j; `) �

~

�(k � i; `), the right hand

side of the �rst recursion inequality dominates the right hand side of the second.

2

Theorem 10 For any k � 0; ` � 1:

~

�(k; `) � e

4�

p

k ln `

+ 1.

Proof: Kalai [7] does not give a proof but the reference to MSW [10]. In fact we can use Theorem 7 as

follows: De�ne

^

�(k; `) :=

~

�(k; `+1)� 1, and let

�

� be the function which holds Lemma 6 everywhere

with equality. Then Lemma 9 implies

^

�(k; `) �

�

�(k; `), so by Theorem 7 for any k � 0; ` � 0:

^

�(k; `) � e

4�

p

k ln(`+1)

. This is equivalent to the claim. 2

Proof of Theorem 4: Remark that ~a

N;;

� m + n, hence the bound �(m + n; n) is valid for any

linear programs with m = jBj, n = jN j for a call of Kalai(D; ;). We prove the �niteness and

correctness according to the recursion of the algorithm and use induction in k+`. Let

~

B(k; `) denote

the maximal number of pivot operations for any linear program with k and ` as de�ned for

~

�(k; `).

As in the proof of Lemma 9 we can show: For any k � 1:

~

B(k; 1) � 1; for any ` � 1:

~

B(0; `) = 0;

for any k � 1; ` � 2:

~

B(k; `) �

~

B(k � 1; ` � 1) +

~

B(k � 1; `). We easily prove

~

B(k; `) �

�

k�1

`�1

�

for

k � 1, ` � 1. The correctness of the algorithm is now trivial. 2

4.3 Comparison of Algorithms

We give a de�nition for the equivalence of algorithms and two examples for the comparison of the

two algorithms MSW and Kalai that have been presented in the previous two subsections. We

show that these algorithms are not equivalent in our sense.

De�nition 11 (Probabilistic Pivot Sequence Distribution P(D;R)) Consider a randomized

pivoting algorithm A(D;R) accepting as input a dictionary D and a set of indices R (e.g. as in

MSW). After the call ofA(D;R) the algorithmwill generate a (probabilistic) pivot sequence, i.e. sub-

ject to the randomization of the algorithm a sequence of pivot operations on pivots (i

1

; j

1

); (i

2

; j

2

); : : :.

If the algorithm A with input D and R always terminates, all possible pivot sequences are �nite and

will occur with a certain probability: the corresponding probability distribution de�ned on the set

of all �nite pivot sequences for a call of A(D;R) is denoted by P(D;R).

De�nition 12 (Equivalence of Algorithms) Two randomized pivoting algorithmsA1(D;R) and

A2(D;R), both accepting the same input (D;R) where D is a dictionary and R some set of indices,

are called equivalent, if they have for every accepted input (D;R) the same probabilistic pivot se-

quence distribution P(D;R).



Example 1. The �rst example considered is given in dictionary form (1) by the dictionary

0 �1 3 �1

1 2 �1 �1

2 1 �1 0

2 �1 0 0

and N = f1; 2; 3g and B = f4; 5; 6g. The probabilistic pivot sequence distributions of MSW and

Kalai are as follows:

Pivot Sequence MSW Kalai

(4; 2); (5; 1); (6; 4) Prob. =

2

3

Prob. =

3

4

(4; 2); (5; 1); (6; 3); (3; 4) Prob. =

1

3

Prob. =

1

4

.

Hence the two algorithms are not equivalent. The expected number of pivot operations is 3

1

3

for

MSW and 3

1

4

for Kalai: For Example 1 Kalai is (slightly) \faster" than MSW. This is not true

in general, as the following example shows:

Example 2. The second linear program is very similar to the �rst, we have to modify not more

than one entry in the initial dictionary which is for Example 2

0 �1 3 �1

1 2 �1 �1

2 1 �1

1

2

2 �1 0 0

:

The probabilistic pivot sequence distributions of MSW and Kalai for this second example are

Pivot Sequence MSW Kalai

(4; 2); (5; 1); (6; 3) Prob. =

1

3

Prob. =

1

4

(4; 2); (5; 1); (6; 4); (4; 3) Prob. =

2

3

Prob. =

3

4

.

The expected number of pivot operations is 3

2

3

for MSW and 3

3

4

for Kalai.

5. Final Remarks

We have presented in one framework two randomized pivoting algorithms and compared them in

order to show that they are not the same. The original discussions used very di�erent settings

which made comparison di�cult. Our precise analyses may help us investigate where we possibly

overestimate the real complexity. One goal is an extension of the framework to analyse a more general

class of algorithms including primal-dual algorithms such as criss-cross methods [4].

Our framework is combinatorial in the sense that it uses only the signed incidence relations of the

input data and not quantitative information: We can interprete the problems and algorithms as if

they would be in a setting of oriented matroids instead of linear programming (see e.g. [1]). We

even can deal with assumptions as (initial) feasibility and nondegeneracy of LP problems in the

same combinatorial way. The techniques we may use here are e.g. symbolic bounding techniques



and combinatorial perturbation. We can translate the complexity results of Subsection 3.2 to related

results for the overall complexity when this techniques are used; for a detailed discussion see e.g. [3].

All this makes us hope that we can develop a unifying framework for a rich class of (randomized)

pivoting algorithms which then will be an excellent basis for further investigation of most challenging

questions on the complexity of linear programming.

Acknowledgement. The authors wish to thank G�unter Rote for fruitful discussions on this work.

Corresponding Author: L. Finschi

Institut f�ur Operations Research, ETH Z�urich

ETH Zentrum

8092 Z�urich, Switzerland

References

[1] R.G. Bland, A combinatorial abstraction of linear programming, Journal of Combinatorial Theory,

series B 23, 1977, pp. 33{57.

[2] G. B.Dantzig: Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.

[3] L. Finschi: Randomized Pivot Algorithms in Linear Programming, Diploma Thesis, Institut f�ur Oper-

ations Research, ETH Z�urich, 1997.

[4] K. Fukuda, T.Terlaky: Criss-cross methods: A fresh view on pivot algorithms, Mathematical Pro-

gramming, 79, Elsevier North-Holland, 1997, pp. 369{395.

[5] M.Goldwasser: A survey of linear programming in randomized subexponential time, SIGACT News,

26 no. 2, 1995, pp. 96{104.

[6] G.Kalai, A subexponential randomized simplex algorithm, In Proc. 24th Annu. ACM Sympos. Theory

Comput., 1992, pp. 475{482.

[7] G.Kalai, Linear programming, the simplex algorithm and simple polytopes, Mathematical Program-

ming, 79, Elsevier North-Holland, 1997, pp. 217{233.

[8] N.Karmarkar: A new polynomial-time algorithm for linear programming, Combinatorica, 4, 1984, pp.

373{395.

[9] L.G.Khachiyan: Polynomial algorithms in linear programming, U.S.S.R Comput. Maths. Math. Phys.,

Vol. 20, No. 1, 1980, pp. 53{72.

[10] J.Matou�sek, M. Sharir, E.Welzl: A subexponential bound for linear programming, Proceedings of the

eighth annual symposium on Computational Geometry, ACM, Berlin, 6/1992, pp. 1{8.

[11] N.Megiddo: Linear programming in linear time when the dimension is �xed, Journal of the Association

for Computing Machinery, 31, 1984, pp. 114{127.

[12] R.Motwani, P. Raghavan: Randomized Algorithms, Cambrigde University Press, 1995.

[13] R. Seidel: Small-dimensional linear programming and convex hulls made easy, Discrete & Computa-

tional Geometry 6, Springer-Verlag, New York, 1991, pp. 423{434.

[14] M. Sharir, E.Welzl: A combinatorial bound for linear programming and related problems, STACS 92,

volume 577 of Lecture Notes in Computer Science, Springer-Verlag, 1992, pp. 569{579.


