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Abstract

A recent progress on the complete enumeration of oriented matroids enables us to generate
all combinatorial types of small point configurations and hyperplane arrangements in general
dimension, including degenerate ones. This extends a number of former works which concen-
trated on the nondegenerate case and are usually limited to dimension 2 or 3. Our initial study
on the complete list for small cases has shown its potential in resolving geometric conjectures.

1 Introduction

The generation of combinatorial types of point configurations and hyperplane arrangements has
long been an outstanding problem of combinatorial geometry. A point configuration is a set of n
points in the real Euclidean space R

d. Its combinatorial type, called order type, is determined by
the relative positions of the points, more formally by the set of all partitions of the n points by
hyperplanes, where the points may be arbitrarily relabeled. Similarly, a hyperplane arrangement
is a set of n affine hyperplanes in R

d, and its combinatorial type, which we call its dissection type,
is determined by the relative positions of all cells. For the generation of these combinatorial types
no direct method is known, and it appears to be necessary to use combinatorial abstractions
— allowable sequences of permutations, λ-functions, chirotopes, combinatorial geometries, or
oriented matroids; in our work we will use oriented matroids [BLVS+99]. These abstractions are
more general than their geometric counterparts, e.g. there exist oriented matroids which cannot
be realized by any point configuration. Although it is NP-hard to decide whether a given oriented
matroid is realizable or not, the realizability problem is decidable and there are practical methods
which work satisfactory for small instances.

The former work on generation of point configurations and related structures (see e.g. [GP83,
BGdO00, AAK01]) concentrated on the special cases of nondegenerate configurations (i.e. the
cases where e.g. no three points lie on a line) and low dimensions (i.e. d = 2 or d = 3). We
generate the entire list of all cases for small n, including degenerate cases in arbitrary dimension
d. This complete generation of small point configurations and hyperplane arrangements offers a
powerful database for various investigations as we will show by some examples.
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2 Combinatorial Types and Oriented Matroids

We explain in this section how order types and dissection types relate to oriented matroids which
are here illustrated by sphere arrangements.

Consider a point configuration X = {x1, . . . , xn} in R
d. Let a hyperplane H = Hv be described by

a vector v ∈ R
d+1 and the function Hv(x) =

∑d
i=1 vixi + vd+1 such that the sign of Hv(x) defines

the partition of X by H. Then the order type of X is determined by the set V(X) of all sign
vectors V ∈ {−,+, 0}n such that Ve is the sign of Hv(xe) for all e = 1, . . . , n for some v ∈ R

d+1. It
is hence natural to embed X in R

d+1 by adding xe
d+1 = 1 to every xe as then Hv(x) becomes the

scalar product of v and x in R
d+1. Geometrically, we can consider the extended vectors from X

as the normal vectors of a central arrangement of hyperplanes, and this intersected with the unit
sphere Sd leads to a sphere arrangement as depicted in Figure 1 on the left. Every sphere in the

Figure 1: Point Configuration and Hyperplane Arrangement w.r.t. Sphere Arrangements

arrangement has an orientation according to the corresponding normal vector, and by this every
cell in the sphere arrangement has a one-to-one relation to a sign vector in V(X) as introduced
above. In the theory of oriented matroids these cell complexes are well studied; in fact every
realizable oriented matroid has a representation by a sphere arrangement, and every oriented
matroid a representation by a topological sphere arrangement.

An oriented matroid which is defined by a point configuration X has the special property that
the sign vector (+ · · ·+) is in V(X): (+ · · ·+) corresponds to the cell containing v = (0, . . . , 0, 1).
We call the relabeling class of such an oriented matroid an abstract order type.

Consider now a hyperplane arrangement {h1, . . . , hn} in R
d. Similarly as for point configurations,

we embed this arrangement in R
d+1 by fixing the new coordinate to be 1. Every he determines a

hyperplane He in R
d+1 which contains he and the origin 0 ∈ R

d+1. All He intersected with the unit
sphere Sd lead again to a sphere arrangement — where the orientations of the spheres are not given
and may be chosen arbitrarily. This sphere arrangement corresponds to a projective hyperplane
arrangement; for the given Euclidean hyperplane arrangement we have to add information how
it was projected onto Sd, and we can do this by adding an extra sphere with normal vector
(0, . . . , 0, 1) which is specially marked (see the right hand side of Figure 1, the extra sphere is
dashed). Hence oriented matroids which are defined by hyperplane arrangements have the special
property that one element is specially marked: We call this the infinity element. Note that the
orientation of the sphere arrangement is arbitrary and therefore we say that two oriented matroids
define the same abstract dissection type if they coincide for some choice of orientation and some
relabeling which identifies the infinity elements.
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3 Generation of Combinatorial Types

We will generate order types and dissection types from oriented matroids, using the relation which
we discussed in Section 2. For this let be n and d given and consider the complete list I(n, d) of
all oriented matroids up to isomorphism, i.e. up to reorientation and relabeling; using the model
of Section 2 we may think of I(n, d) as a list containing all types of unlabeled and unoriented
topological sphere arrangements with n spheres on Sd. We describe in [FF01] several methods
how I(n, d) can be generated. We use I(n, d) as the input for the following.

Abstract order types have the special property that some cell in the oriented sphere arrangement
corresponds to the sign vector (+ · · ·+). Consider any oriented sphere arrangement A in I(n, d),
in A some cell c of maximal dimension and its corresponding sign vector V (c): A reorientation of A
according to V (c) will let c correspond to (+ · · ·+). Hence the list of all sign vectors corresponding
to cells of maximal dimension in A, which we can compute efficiently, is sufficient to find all
abstract order types isomorphic to A. Computations give the following numbers of isomorphism
classes and abstract order types (note that there are considerably fewer nondegenerate abstract
order types, e.g. 1, 2, 3, 16, 135, 3315, 158830 for d = 2 and n = 3, . . . , 9):

Oriented Matroids up to Isomorphism Abstract Order Types
n = 3 4 5 6 7 8 9 3 4 5 6 7 8 9
d = 2 1 2 4 17 143 4890 461053 1 3 11 93 2121 122508 15296266
d = 3 1 3 12 206 181472 1 5 55 5083 10775236
d = 4 1 4 25 6029 1 8 204 505336
d = 5 1 5 50 1 11 705
d = 6 1 6 91 1 15 2293
d = 7 1 7 1 19
d = 8 1 1

The complete list of abstract dissection types for n hyperplanes in R
d is obtained from I(n+1, d):

For every sphere arrangement A in I(n + 1, d) there are n + 1 choices for the infinity element
which leads to all abstract dissection types isomorphic to A. Due to the limited space we omit
details here.

As remarked before, not all oriented matroids are realizable. In the nondegenerate case, the
realizability problem is solved for n ≤ 8 (n ≤ 10 for d = 2), where the problem is attacked from to
sides: (i) finding realizations (using randomly generated points, various insertion or perturbation
techniques) and (ii) proving that no realization can exist (e.g. with final polynomials). The general
case still needs work in both directions: Finding coordinates has the additional difficulty that some
realizable instances do not have rational solutions; on the other hand some of the earlier methods
to detect non-realizability have to be generalized to the degenerate case.

4 Applications

Before we discuss one example in more detail below, the following few remarks may hint on
some possible impacts of our database of combinatorial types. There has been a strong interest
in the number of faces (f -vectors) and specially the number of simplicial topes (mutations) of
arrangements and oriented matroids, or in k-sets and extremal properties of point configurations;
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our database provides all these data for further investigations. The list of abstract order types
has been used to compute all types of polytopes which coincide with the known results, by this
providing an independent proof of the known classifications of combinatorial types of polytopes.

Consider now the following conjecture of Da Silva and Fukuda (Conjecture 4.2 in [DSF98]), which
is a strong version of the Sylvester-Gallai Theorem: Assume that X is a point configuration in
R

2, not all points on a line. Let H be a line which does not contain a point from X but separates
X into two parts H− and H+ such that |H−| and |H+| differ by at most 1. Then there exists a
line H̃ which contains exactly two points of X, one from H− and one from H+.

Some weaker versions of this conjecture have been proved by Pach and Pinchasi [PP00]. We have
tested the conjecture itself against our database of abstract order types: It is valid for n ≤ 8
points, but for n = 9 points the list of 15296266 abstract order types contains one counter-
example, and this is the only one for n = 9. Moreover this abstract order type has been found to
be realizable; a picture of the counter-example is given in Figure 2.

H

Figure 2: Da Silva-Fukuda–Conjecture: The Counter-Example with 9 Points
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