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Abstract

This thesis studies the reconstruction and generation of oriented matroids. Oriented ma-
troids are a combinatorial abstraction of discrete geometric objects such as point con-
figurations or hyperplane arrangements. Both problems, reconstruction and generation,
address fundamental questions of representing and constructing (classes of) oriented ma-
troids. The representations which are discussed in this thesis are based on graphs that are
defined by the oriented matroids, namely tope graphs and cocircuit graphs. The first part
of this thesis studies properties of these graphs and the question as to what extent oriented
matroids are determined by these graphs. In the second part, these graph representations
are used for the design of generation methods which produce complete lists of oriented
matroids of given number of elements and given rank. These generation methods are used
in the third part for the construction of a catalog of oriented matroids and of complete
listings of the combinatorial types of point configurations and hyperplane arrangements.

The reconstruction problem is the problem of whether an oriented matroid can be re-
constructed from some representation of it, which is here the tope graph and the cocir-
cuit graph. It is known that tope graphs determine oriented matroids up to isomorphism.
However, there is no simple graph theoretical characterization of tope graphs of oriented
matroids. We strengthen the known properties of tope graphs and prove that for every
elementf the topes that are not bounded byinduce a connected subgraph in the tope
graph. This property is later used for the design of generation methods that are based on
tope graphs.

On the contrary to the tope graph case, it is known that cocircuit graphs do not determine
isomorphism classes of oriented matroids. However, if every vertex is labeled by its sup-
porting hyperplane, oriented matroids can be reconstructed up to reorientation. We present
a simple algorithm which gives a constructive proof for this result. Furthermore, we ex-
tend the known results and show that the isomorphism classmf@amoriented matroid

is determined by its cocircuit graph. In addition, we present polynomial algorithms which
provide a constructive proof to this result, and it is shown that the correctness of the input
of the algorithms can be verified in polynomial time.

The generation problem asks for methods for listing all oriented matroids of given car-
dinality of the ground set and given rank. The known generation methods have been
designed primarily for uniform oriented matroids in rank 3 or 4. Our methods are based
on tope graph and cocircuit graph representations and generate all isomorphism classes
of oriented matroids, including non-uniform ones in arbitrary rank. The generation ap-
proach incrementally extends oriented matroids by adding single elements. These single
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element extensions are studied in terms of localizations of graphs, which are signatures
on the vertex sets that characterize single element extensions.

The first two generation methods are based on tope graphs. These methods make use of the
properties of tope graphs studied earlier in this thesis, especially of the new connectedness
property. The first method is a reverse search method for the generation of generalized
localizations in the tope graph. In the second method graph automorphisms are used
to reduce the amount of isomorphic single element extensions. Furthermore we discuss
technigues which reduce multiple extension of the same oriented matroid from different
minors.

Two algorithms based on cocircuit graph representations are designed similarly to those
based on tope graphs. However, all these first four generation methods lack efficiency,
and a reason for this is that they do not use a good characterization of localizations. Due
to a result of Las Vergnas, localizations of cocircuit graphs can be characterized by sign
patterns on the coline cycles in the cocircuit graph. This allows us to design a fifth method
which is efficient in practice. This method is a backtracking algorithm which enumerates
all sign patterns of coline cycles that are feasible in terms of the characterization. It
turns out that the method is similar to a method of Bokowski and Guedes de Oliveira
for the uniform case. Our method is more general as it is capable to handle all oriented
matroids in arbitrary rank, including non-uniform oriented matroids. Furthermore it uses
an efficient data structure and a new dynamic ordering in the backtrack procedure.

The generation methods are used for the construction of a catalog of oriented matroids.
This catalog is organized using basis orientations of oriented matroids. We discuss some
properties of the catalog and a method to generate the catalog. The catalog of ori-
ented matroids can be used to find complete listings of combinatorial types of point
configurations and hyperplane arrangements. We study these listing problems and dis-
cuss solution methods. Furthermore we show by an example the potential of these
complete listings in resolving geometric conjectures. The listings of oriented matroids,
point configurations, and hyperplane arrangements can be accessed via the Internet on
http://www.om.math.ethz.ch



Zusammenfassung

Diese Dissertation behandelt die Rekonstruktion und Erzeugung von Orientierten Matro-
iden. Orientierte Matroide sind eine kombinatorische Abstraktion von diskreten, geome-
trischen Objekten wie z. B. Punktkonfigurationen oder Hyperebenenarrangements. Bei-
de Probleme, Rekonstruktion und Erzeugung, stellen fundamentale Frageidieder
Darstellung und Herstellung von (Klassen von) Orientierten Matroiden. Die Darstellun-
gen, welche in dieser Dissertation diskutiert werden, basieren auf Graphen, die durch
die Orientierten Matroide definiert werderamlich Tope-Graphen und Kokreis-Graphen.

Der erste Teil dieser Dissertation untersucht Eigenschaften dieser Graphen und die Fra-
ge, wie weit Orientierte Matroide durch diese Graphen bestimmt werden. Im zweiten Tell
werden diese durch Graphen gegebenen Darstellungedid Entwicklung von Erzeu-
gungsmethoden verwendet, welche valigtige Listen von Orientierten Matroiden mit
einer gegebenen Anzahl von Elementen und gegebenem Rang herstellen. Diese Erzeu-
gungsmethoden werden im dritten Teil verwendetdie Erstellung eines Kataloges von
Orientierten Matroiden und von voltdigen Auflistungen der kombinatorischen Typen
von Punktkonfigurationen und Hyperebenenarrangements.

Das Rekonstruktionsproblem ist gegeben durch die Frage, ob ein Orientiertes Matroid von
einer gewissen Darstellung von ihm wiederhergestellt werden kann; die hier betrachteten
Darstellungen sind der Tope-Graph und der Kokreis-Graph. Es ist bekannt, dass Tope-
Graphen Orientierte Matroide bis auf Isomorphie bestimmen. Allerdings gibt es keine
einfache, graphentheoretische Charakterisierung der Tope-Graphen von Orientierten Ma-
troiden. Wir erweitern die bekannten Eigenschaften von Tope-Graphen und beweisen,
dass @i jedes Element die durchf nicht begrenzten Tope im Tope-Graphen einen zu-
sammenhigenden Untergraphen induzieren. Diese Eigenschaft wateispir die Ent-
wicklung von Erzeugungsmethoden verwendet, welche auf Tope-Graphen basiert sind.

Im Gegensatz zum Tope-Graphen bestimmt der Kokreis-Graph die Isomorphieklasse ei-
nes Orientierten Matroids nicht. Wenn aber jeder Knoten mit detzByperebene mar-

kiert wird, kann das Orientierte Matroid bis auf Reorientierung rekonstruiert werden. Wir
stellen einen einfachen Algorithmus vor, der dieses Ergebnis konstruktiv beweist. Ausser-
dem erweitern wir die bekannten Resultate und zeigen, dass die Isomorphieklasse eines
uniformenQOrientierten Matroids durch den Kokreis-Graphen bestimmt ist. Zudem stellen
wir polynomiale Algorithmen vor, welche einen konstruktiven Beweis dieses Ergebnisses
bieten, und es wird gezeigt, dass die Eingabe der Algorithmen in polynomialer Zeit auf
Korrektheituberpuift werden kann.

Das Erzeugungsproblem verlangt nach Methoden zur Auflistung aller Orientierten Ma-
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troide von gegebener Kardinattder Grundmenge und gegebenem Rang. Die bekann-
ten Erzeugungsmethoden wurden haagidich fir uniforme Orientierte Matroide im
Rang 3 oder 4 entwickelt. Unsere Methoden basieren auf Darstellungen durch Tope-
Graphen und Kokreis-Graphen und erzeugen alle Isomorphieklassen von Orientierten
Matroiden, einschliesslich nicht-uniformer in beliebigem Rang. Der Erzeugungsansatz
erweitert schrittweise Orientierte Matroide durch Hinmyn einzelner Elemente. Diese
1-Element-Erweiterungen werden anhand von Lokalisierungen von Graphen untersucht,
welches Signaturen auf der Knotenmenge sind, welche 1-Element-Erweiterungen charak-
terisieren.

Die ersten beiden Erzeugungsmethoden basieren auf Tope-Graphen. Diese Methoden ma-
chen Gebrauch von den Eigenschaften von Tope-Graphen, die vorher in dieser Disserta-
tion untersucht wurden, besonders von der neuen Zusammenhangseigenschatft. Die erste
Methode ist eine Umkehrsuchmethode tlie Erzeugung von verallgemeinerten Loka-
lisierungen im Tope-Graphen. In der zweiten Methode werden Graphenautomorphismen
verwendet, um die Menge von isomorphen 1-Element-Erweiterungen zu reduzieren. Wei-
ter diskutieren wir Techniken, welche das mehrfache Erzeugen des gleichen Orientierten
Matroids von verschiedenen Minoren vermindern.

Basierend auf Darstellungen mittels Kokreis-Graphen werden zwei Algorithmen ent-
wickelt, &hnlich jenen, die auf Tope-Graphen basieren. Diese ersten vier Erzeugungs-
methoden sind jedoch alle wenig leisturagsfj, und ein Grund daf'liegt darin, dass sie
keine gute Charakterisierung von Lokalisierungen verwenden. Infolge eines Ergebnisses
von Las Vergnas &rinen Lokalisierungen von Kokreis-Graphen charakterisiert werden
durch Vorzeichenmuster auf den Kolinien-Kreisen im Kokreis-Graph. Dies erlaubt uns,
eine tinfte Methode zu entwickeln, welche in der Anwendung effizient ist. Diese Metho-
de ist ein Rickverfolgungs-Algorithmus, welcher alle Vorzeichenmuster von Kolinien-
Kreisen enumeriert, die zagsig sind im Sinne der Charakterisierung. Es stellt sich heraus,
dass die Methodaltinlich ist zu einer Methode von Bokowski und Guedes de Olivaira f~
den uniformen Fall. Unsere Methode ist allgemeiner, da sie alle Orientierten Matroide in
beliebigem Rang behandeln kann, einschliesslich nicht-uniformer Orientierter Matroide.
Zudem benutzt sie eine effiziente Datenstruktur und eine neue dynamische Reihenfolge
im Ruckverfolgungs-Verfahren.

Die Erzeugungsmethoden werdem diie Erstellung eines Kataloges von Orientierten Ma-
troiden verwendet. Dieser Katalog wird mittels Basisorientierungen von Orientierten Ma-
troiden organisiert. Wir diskutieren einige Eigenschaften des Kataloges und eine Methode
fur die Erzeugung des Kataloges. Der Katalog von Orientierten Matroiden kann verwen-
det werden, um vollstidige Auflistungen der kombinatorischen Typen von Punktkonfi-
gurationen und Hyperebenenarrangements zu finden. Wir untersuchen diese Auflistungs-
probleme und diskutierendsungsmethoden. Weiter zeigen wir mit einem Beispiel das
Potential dieser vollstidigen Auflistungen im aSen von geometrischen Vermutungen.

Die Auflistungen von Orientierten Matroiden, Punktkonfigurationen und Hyperebenen-
arrangements sind im Internet amgjlich unterhttp://www.om.math.ethz.ch
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Motivation and Overview

Introduction

Oriented matroids are a natural mathematical notion which may be viewed as a combi-
natorial abstraction of real hyperplane arrangements, convex polytopes, or point config-
urations in the Euclidean space. The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. There are several different (but equivalent) axiom systems and repre-
sentations of oriented matroids, and the theory of oriented matroids has connections and
applications to many areas of mathematics. These areas include combinatorics, discrete
and computational geometry, optimization, and graph theory.

We illustrate oriented matroids in the following by sphere arrangements. A more detailed
introduction to oriented matroids is given in Chapter 0. For a most comprehensive pre-
sentation of the theory of oriented matroids we refer to the monographooh&j Las
Vergnas, Sturmfels, White, and Ziegler [BLVS9)].

A finite sphere arrangemest= {S | e € E} in the Euclidean spadgd+! is a collection

of (d — 1)-dimensional unit spheres on tiedimensional unit spherg&®, where every
sphere& is oriented (i.e. has & side and a— side). Figure 1 shows an example for
d = 2 with |E| = 4 spheres; in the following we will refer to this example several times.

Figure 1: Sphere arrangement



4 MOTIVATION AND OVERVIEW

The sphere arrangemefiinduces a cell comples on S%. For every poin on ¥ we
define asign vector Xe {—, +, 0}F by settingXe = 0 if x is on &, otherwiseXe = +

(or Xe = —) if x is on the+ side (or— side, respectively) o&. For example, the point
Ain Figure 1 is associated to the sign vect@ 0 — +), and a point in the (relative
interior of) regionBC D is mapped ta + + + +). We call these sign vectoc®vectors
and denote the set of all covectors By Obviously there is a one-to-one correspondence
between the cells itK and the covectors itF. Furthermore the facial relationship in
JK can be recognized iff: for covectorsX,Y € ¥, X corresponds to a subface of the
face corresponding t¥ if and only if Xe # 0 implies Xe = Ye for all e € E. By this,

K and F have the same face poset. We ¢&ll ¥) the oriented matroid defined b
Whereass and.KX are a geometric objects, the corresponding oriented matiid ) is
purely combinatorial, reflecting the relative positions of the cells in the comflenly.

In general, oriented matroids are defined by axioms#orNot every oriented matroid
has a realization by a sphere arrangement, but every oriented matroid can be represented
by a topological sphere arrangement ([FL78, Man82], see also Chapter 0).

For the study of combinatorial objects, an axiomatic foundation as in the theory of ori-
ented matroids is a crucial advantage, as compared to direct work on geometric realiza-
tions where such a foundation is missing. By their axioms, oriented matroids have poly-
nomial characterizations; on the other hand iNR-hard to decide whether an oriented
matroid has a realization (by a sphere arrangement) or noe@@nSho91], i.e., there is

no polynomial characterization of the combinatorial structure (in the sense of an oriented
matroid) of a sphere arrangement unl®s= NP. Furthermore, there are methods to
decide whether an oriented matroid is realizable or not which work satisfactory for small
instances [RG92].

In addition to the existence of axioms, the finiteness of oriented matroids can guarantee
the completeness of investigations. For given dimension and number of spheres there
exists an infinite number of sphere arrangements, whereas there are only finitely many
combinatorial types of such arrangements, i.e., there is only a finite number of different
face posets of oriented matroids. Many combinatorial problems are so difficult that often
the most promising way is the enumeration of all possible cases. For combinatorial prob-
lems which arise from geometry and have an abstraction in terms of oriented matroids
the enumeration of all cases is, in principle, possible because of the finiteness and the
axiomatic foundation of oriented matroids. The following two examples may illustrate
the importance of methods for the generation of oriented matroids.

The geometric realization of triangulated 2-manifolds is the problem whether some given
triangulated (topological) 2-manifold has a polyhedral embeddiRyFinn other words,

for a list of triangles om vertices which describe an abstract 2-complex, the problem

is to decide whether there are coordinates for the vertices such that the triangles in the
list correspond to non-intersecting facets of a geometric 2-manifold. For 2-manifolds of
genusg = O (i.e., spheres) the problem is decidable because of Steinitz’'s theorem: the
2-manifold is realizable if and only if the graph defined by the adjacency of the vertices

is planar and 3-connected. For 2-manifolds of gegus 0 (spheres withg handles)

the problem was posed by Grbaum (Exercise 3 of Section 13.2 in [Bi7]) and is wide

open; only certain smaller instances are decided. A remarkable progress has been recently
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made by Bokowski and Guedes de Oliveira [BGdOO00] who proved by enumeration of
oriented matroids that there is no realization of a certain 2-manifoldm#thl2 vertices
which has genug = 6. For a more detailed survey on polyhedral 2-manifolds see Section
A.7 in [BLVST99].

The order type of a point configuration, as introduced by Goodman and Pollack [GP83],
is the combinatorial type described by all the relative positions in a finite set of points
in the Euclidean space. Many problems in combinatorial geometry are stated in terms
of point configurations, and there have been early attempts to list all order types, or all
combinatorial types of related structures such as hyperplane arrangements. However,
these listings could consider only very small cases, configurations of at most 5 points
in [GP80a] or (projective) hyperplane arrangements of at most 6 hyperplanesir2]ir-
Furthermore the completeness of the listings was not always clear (e.g., in an eatrlier list
of all arrangements of at most 6 hyperplanes in Section 18.1 afg@rone case was
missing). Often the listing was restricted to some special, non-degenerate c&ses in
Recently there has been a considerable progress in the enumeration of non-degenerate
order types of point configurations in the Euclidean plane by Aichholzer et al. [AAKO1],

by this establishing the first data base of all non-degenerate order typesf@0d points

in R2. This data base has been contructed by generation of certain representations of
oriented matroids which have been realized by coordinates as far as possible, where the
completeness of the listing has been guaranteed by known realizability results from the
literature (e.g., see [Bok93]). Applications of the order type data base to several problems
in computational and combinatorial geometry [AKO1] has shown the usefulness of such
listings.

Problems and Goals

A main goal of this thesis is to investigate and develop methods which generate complete
listings of oriented matroids of given size. Techniques for listing oriented matroids for
smalln = |E| andd have been studied, among others, by Bokowski, Sturmfels, and
Guedes de Oliveira (e.g., [BS87, BS89, BGdOO0Q]). However, it seems that the meth-
ods are designed primarily for the case of uniform oriented matroids and low dimen-
sion d = 2 ord = 3). Uniform oriented matroids are those which correspond to non-
degenerate (pseudo-)sphere arrangements, i.e., the spheres are assumed to be in general
position (see Figure 2). Our goal is to find methods which work for general oriented
matroids in arbitrary dimension, including non-uniform oriented matroids.

Many questions which can be solved when having a complete list of oriented matroids
only depend on the isomorphism class, which is the equivalence class under reorientation
and relabeling of the elements. An illustration of isomorphism classes are arrangements
of unoriented and unlabeled spheres (as showed in Figure 2). Important combinatorial
properties such as the face poset only depend on the isomorphism class, even more, the
face poset determines the isomorphism class. However, the face poset is a rather compli-
cated and very redundant structure and hence not well suited for practical purposes. It will
be sufficient to use only parts of the face poset, namely two graphs which are defined by
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Figure 2: Sphere arrangements of non-uniform and uniform oriented matroids

the face poset, the so-callempe graphand thecocircuit graph These graphs will serve

as a base of rather simple and compact representations of isomorphism classes of oriented
matroids and will be helpful for the design of methods that solve the problem which we
posed above: the generation of isomorphism classes of arbitrary oriented matroids.

Consider again thé-dimensional sphere arrangeménwith corresponding cell complex

K and oriented matroidd = (E, ) as introduced above. The cells of maximal dimen-
siond — 1 in KX are calledregionsand the corresponding covectorsfntopes Two
regions are calleddjacentf they have a commond — 2)-dimensional face, and this is

the case if and only if the corresponding topéandY disagree in exactly one sign. This
defines an adjacency notion for topes and by this a graph whose vertices correspond to
topes, which is called thepe graptof the oriented matroid. Figure 3 shows the cell com-
plex with two adjacent region8 B D and BC D, which correspond to the adjacent topes
(++—+) and(+ + + +), and the tope graph of the corresponding oriented matroid.

Figure 3: Adjacent regions in sphere arrangement and tope graph
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It is known that the tope graph determines the whole face poset [BEZ90]. This motivates
to use tope graphs as a representation of isomorphism classes. This brings up two prob-
lems: to reconstruct an oriented matroid for a given tope graph, and to decide whether a
given graph is the tope graph of some oriented matroid or not. For example, it is known
that every tope graph is bipartite and embeddable in some hypercube, but this is not a
characterization. It is a goal of the thesis to review known results, to extend them, and
to discuss algorithmic solutions for these reconstruction and characterization problems.
These investigations will enable us to design algorithms for the generation of tope graphs
of oriented matroids, hence for the generation of oriented matroids up to isomorphism.

A second graph which is defined by the face poset istioércuit graph Consider again

the sphere arrangemef#itas introduced above. The cells of minimal dimension (i.e., the
O-dimensional cells) inK are the vertices of a graph whose edges correspond to the 1-
dimensional cells inX, i.e., two vertices are adjacent if they are the two endpoints of a
1-dimensional cell inX. In short, this graph is the 1-skeleton&f. In the oriented ma-

troid M = (E, ) defined by4, the covectors which correspond to 0-dimensional cells
are calleccocircuits The adjacency for cocircuits corresponding to the one of vertices in
K is defined by the facial relationship of covectors as defined above. In the example from
above consider two cocircuits, sap + 0 +) and(4+ 0 0 0), which correspond to the
verticesB andD in the sphere arrangement. These cocircuits are adjacent since they are
the only two proper subfaces 6% + 0 +) € ¥, which corresponds to the fad&D in

K. The adjacency relation of cocircuits definesdbeircuit graphof an oriented matroid

(see also Figure 4). Cocircuit graphs are quite different from tope graphs, e.g., a cocircuit

Figure 4. Sphere arrangement and cocircuit graph

graph is not bipartite fod > 2. Furthermore, it is known that cocircuit graphs do not
characterize the face poset [CFGdOOQ0]. Nevertheless, when some information is added to
the graph, such as vertex labels which indicate for every verteg set of spheres which
containv, the face poset can be reconstructed. It is a goal of this thesis to investigate cocir-
cuit graphs and the corresponding reconstruction and characterization problems. Similar
to tope graphs we will investigate algorithmic solutions for these problems, and it will
turn out that cocircuit graphs can be used as a base for the design of efficient generation
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algorithms of oriented matroids.

The goal to find methods for the generation of oriented matroids up to isomorphism
has lead to the consideration of graph representations, namely tope graphs and cocir-
cuit graphs. The better these graph representations are understood and characterized, the
better they can be used for generation methods. On the other hand, from a more intrinsic
point of view, our understanding of tope graphs and cocircuit graphs will profit from the
investigation of algorithms for reconstruction and generation of oriented matroids.

Main Results

Part | of this thesis discusses the reconstruction and characterization problems of tope
graphs and cocircuit graphs, whereas Part 1l is devoted to generation methods. Part Il
will show some applications, namely the construction of a catalog of oriented matroids
and of complete listings of combinatorial types of point configurations, polytopes, and
hyperplane arrangements. For an overview of the dependencies of the chapters see also
the structure diagram on page Xix.

Chapter Ointroduces the theory of oriented matroids, presenting the notation, several
axiom systems and results from the theory of oriented matroids which are used in this
thesis. Although there are no new results in this chapter, the presentation and also most of
the proofs have been written for the purpose of introducing the basic material of the thesis,
which also caused a selection of the known results and a discussion from a personal point
of view. Later chapters will depend on Chapter 0 and refer to it whenever necessary.

Part| Reconstruction and Characterization Problems

Chapter 1discusses tope graphs of oriented matroids. We define tope graphs in Sec-
tion 1.1 and address the two main problems considered in Chapter 1, the characterization
problem and the reconstruction problem of tope graphs. The characterization problem is
the problem to decide whether a given graph is the tope graph of some oriented matroid.
The reconstruction problem is the problem to find for a given tope gé&pim oriented
matroid M such thatG is the tope graph ofd. The investigation of these problems is
organized as follows.

Section 1.2 reviews some properties of tope graphs which are known from the literature
[FH93] which state that tope graphs can be embedded in some higher-dimensional hyper-
cube such that distances in the tope graph and in the hypercube coincide. These properties
are not sufficient to characterize tope graphs of oriented matroids; in fact, no characteri-
zation of tope graphs is known which can be verified in the graph in polynomial time.

A first main result of this thesis is a connectedness (or separability) property established
in Section 1.3. Consider again the example introduced above, and choose an arbitrary
elementf, say f = 4. The sphere arrangemefitan be constructed by insertii®y as

a new sphere i \ f := {S, $, S3}. The regions of§ are obtained from the regions
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in 8\ f by dividing some regions, thosrit by S, into two new regions; the remaining
regions stay unchanged, we call theseutregions. Figure 5 shows the uncut regions for
f = 4. Correspondingly, we call a tope anuncut topeif the sign vector+ X, which

Figure 5: Uncut regions in sphere arrangemednt{ 4)

is obtained fromX be reversing the sign i, is not a tope. We proof that if there exist
uncut topes for some givehthen the subgraph induced in the tope graph by uncut topes
has exactly two connected components. Stated differently, the new eldnsepiarates

the uncut topes in two connected parts which correspond te-thed the+ side of f.

The proof of this connectedness property uses nontrivial inductive arguments and results
from oriented matroid programming, which is an abstraction of linear programming. The
property can be verified easily for a given tope graph (without knowledge of topes as sign
vectors) and is independent from the known properties of tope graphs as we show by an
example. Still, the new result does not lead to a graph theoretical characterization of tope
graphs of oriented matroids, as we can give another example which satisfies the known
tope graph properties (including the connectedness for every eleiént is not a tope

graph of an oriented matroid.

Section 1.4 discusses the reconstruction problem for tope graphs which can be solved by
a simple algorithm of Cordovil and Fukuda [CF93]. This algorithm makes it possible to
characterize tope graphs of oriented matroids by use of an algorithmic characterization
of tope sets, which is discussed in the last three sections of Chapter 1. The problem to
decide whether a given s@t of sign vectors is the tope set of some oriented matroid

is solved in three steps. A first algorithm due to Fukuda, Saito, and Tamura [FST91]
constructs (in polynomial time) frofi” a set of sign vector® such that if7" is a set of

topes thenD is the corresponding set of cocircuits. In a second £6p tested to be the

set of cocircuits of some oriented matroid, which is possible in polynomial time using the
cocircuit axioms of oriented matroids. Finally, we present an algorithm which constructs
the set of tope§ ™’ from the cocircuitsD. If 7 is the set of topes of some oriented matroid
then7 = 7/, otherwise the method recognizes that this is not the case. The algorithm for
the construction of topes from cocircuits is proved to be polynomial in the sizes of input
and output; this extended notion of polynomiality [Fuk96, FukOOa, Fuk01] is used since
the number of topes can be exponential in the number of cocircuits.
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Chapter 2discusses the reconstruction and characterization problems concerning cocir-
cuit graphs. An example of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] shows
that the cocircuit graph of an oriented matroid does not characterize the face poset. How-
ever, the question remained open for cocircuit graphs of uniform oriented matroids (which
we will simply call uniform cocircuit graphy and positive answers are possible when
some information about the oriented matroid is added to the cocircuit graph, as we dis-
cuss in the following using the notion of labels. We define three types of labels:

e An OM-label(oriented matroid label) of a cocircuit graph is a méghat associates
every vertex in the cocircuit graph to its corresponding cocircuit. In the example
presented above, the vert€xis mapped ta(C) = (0 + + 0).

e An OM-label £ induces arM-label (matroid label)L which carries the underlying
matroid information only, i.e.l. maps every vertex to the set of elements which
correspond to 0 signs i (v). We write this definition a& (v) := £(v)° for every
vertexv. In the example from above;(C) = (0 + + 0) inducesL (C) = {1, 4}.

e An M-label induces a\P-label(antipode label) by mapping every vertexo the
so-calledantipodev of v which is characterized bl (v) = L) andv # v. In the
example of above, the vert€xis mapped to its antipode.

In addition to labels there is the notion obline cyclesn cocircuit graphs which play

an important role for reconstruction and also later for generation methods. In a sphere
arrangement a coline cycle is the subgraph induced in the cocircuit graph by the 1-
dimensional intersection of a number of spheres. In our examp& each coline cycle

is trivially given by the edges belonging to one sphere. In the M-labeled cocircuit graph
of an oriented matroid a coline cycle is the subgraph induced by the edges having same
M-label, where the M-label of an edge is defined as the intersection of the vertex labels of
the two end points; in fact, a coline cycle is always a cycle in the cocircuit graph. Figure 6
shows the M-labeled cocircuit graph and indicates the coline cycles.

Figure 6: Coline cycles in M-labeled cocircuit graph
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As aresult of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] the M-labeled cocir-
cuit graph determines the oriented matroid up to reorientation. We present in Section 2.2
a simple algorithm for the orientation reconstruction from an M-labeled cocircuit graph.
The idea is based on a connectedness property [CFGdOO00] which is similar to that dis-
cussed above for tope graphs: letbe an arbitrary element and consider the subgraph
G(f) induced in the cocircuit graph by the vertiaeor which f is notinL (v); then two
verticesv, w are connected i () if and only if L(v) = L(w) # 0 for any OM-label

L that induced..

As one of the major results in this thesis we prove that the cocircuit grapbrof@mori-

ented matroid determines its isomorphism class. This strengthens the known result that the
isomorphism class is determined by an AP-labeled uniform cocircuit graph [CFGdOO0Q].
We prove the known and the new result providing (polynomial) algorithms which recon-
struct the isomorphism class in several steps. The reconstruction of an oriented matroid
from a given M-labeled cocircuit graph has been considered above. Section 2.3 presents
two algorithms, one for the reconstruction of an M-label of a uniform cocircuit graph
from the set of colines cycles, a second which finds the set of colines cycles from an
AP-label. In Section 2.4 we show how an AP-label of a given uniform cocircuit graph
can be constructed in polynomial time. A first important result is that an AP-label of a
uniform cocircuit graph is determined by only two pairs of antipodal vertices which are
known to be on a common coline cycle. The main theorem states that the AP-label of
a uniform cocircuit grapl@ is determined byG up to graph automorphisms. The proof

of this theorem considers the automorphism group(&utand is based on the previous
reconstruction results of Chapter 2.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization).

The results of Chapter 2 are also related to Perles’s conjecture which says that the
1-skeleton of a simplel-dimensional polytope determines its face poset; this conjec-
ture was first proved by Blind and Mani-Levitska [BML87] and then constructively by
Kalai [Kal88]. If an oriented matroid is realizable, the cell compJgxformed by ¥ is
isomorphic to the face poset of the dual of a zonotope (zonotopes are polytopes which are
projections of higher-dimensional hypercubes), i.e., the present work extends the discus-
sion of Perles’s conjecture to a class of non-simple polytopes. Joswig [Jos00] conjectured
that every cubical polytope (i.e., evefy — 1)-dimensional face is isomorphic to a hyper-
cube) can be reconstructed from its dual graph; our result proves this conjecture for the
special case of cubical zonotopes up to graph isomorphism. In other words, the face poset
of every cubical zonotope is uniquely determined by its dual graph up to isomorphism.

Part Il Generation Methods

Chapter 3introduces the generation problem of oriented matroids and presents an incre-
mental method for the generation of isomorphism classes. In this incremental method
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oriented matroids are generated by single element extensions, i.e., oriented matroids are
extended to new oriented matroids by introducing one element after the other. This ap-
proach is the one also used in former methods [BS87, BS89, BGdOO00]. New is that we
use tope graphs and cocircuit graphs and that all oriented matroids in arbitrary dimension
are considered. Single element extensions are represented in tope graphs and cocircuit
graphs by signatures on the vertex sets, so-cdtlealizations Consider again the ex-
ample of above. The sphere arrangemégrg obtained from$ \ f as a single element
extension by addin; . This defines localizations of the vertex sets of the tope graph and
cocircuit graph off \ f as follows. In the tope graph, every vertex which corresponds to
aregion that is divided by into two new regions is labeled by a 0 sign, the other vertices

by a— or + sign according to whether the corresponding regions are o e+ side

of f. In the cocircuit graph, every vertex takes-a+, or 0 sign according to whether it

is on the— or + side of f or contained inf. Figure 7 shows the localizations in the tope
graph and cocircuit graph &f \ f for the above example anfd= 4.

AB

Figure 7: Localizations of tope graph and cocircuit graph

Chapter 4presents generation methods that are based on tope graphs. Section 4.1 dis-
cusses the strong relation between automorphisms of tope graphs and isomorphisms in
oriented matroids and presents an algorithm for testing isomorphisms of tope graphs. Sec-
tion 4.2 gives a formal definition of localizations of tope graphs and discusses the relation
to single element extensions and properties of localizations. We use the connectedness of
uncut topes from Chapter 1 to prove that for any tope gi@pmnd localizatioro of G

the subgraph its induced by the vertices with o (v) = — is connected. This property

is essential for the design of two algorithms in Sections 4.3 and 4.4 for the generation of
localizations. Both methods generate a superset of localizations, so\wakédocaliza-

tions every weak localization can be tested for being a localizations using the characteri-
zation algorithms from Chapter 1. The first algorithm is a reverse search method [AF96]
which generates every weak localization once without repetition. The second algorithm
incorporates isomorphism tests in order to reduce the amount of enumeration as we are
only interested in generating oriented matroids up to isomorphism. Both methods are new
methods for the generation of oriented matroids and not similar to any of the known meth-
ods. However, they turn out to be of limited use in practice. It seems that the absence of
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a good characterization of localizations in tope graphs causes these methods to become
inefficient as the number of elements increases. Hence these methods will not be used for
the generation of oriented matroids in practice.

Chapter 5presents generation methods based on the cocircuit graph of oriented matroids.
In contrast to tope graphs, cocircuit graphs do not characterize isomorphism classes of
oriented matroids. However, the results of Chapter 2 show that an M-labeled cocircuit
graph, whose M-label is considered up to relabeling, characterizes the isomorphism class
of the corresponding oriented matroid. This representation is useful in Section 5.1 where
we discuss the relation between automorphisms of cocircuit graphs and isomorphisms of
oriented matroids and where we present an algorithm for testing isomorphisms of cocir-
cuit graphs. Section 5.2 formally defines localizations of cocircuit graphs and discusses
the relation to single element extensions. The connectedness result which was already
helpful for the orientation reconstruction in Chapter 2 is used for designing two genera-
tion algorithms based on cocircuit graphs which are similar to those for tope graphs in
Chapter 4. The signatures produced by these algorithms form a superset of all localiza-
tions of a cocircuit graph, which are characterized by the following result of Las Vergnas
[LV78b]: a signature is a localization of a cocircuit graph (given with a set of coline cy-
cles) if and only if for every coline cycle the induced signature is of one of the three types
given in Figure 8. This characterization is used in Section 5.4 for the design of an effi-

+ _ + _
+ _ + _
+ _ + _
+ _ + _
0 +
Type | Type Il Type llI

Figure 8: Signatures on coline cycles induced by a localization

cient generation method. This method is basically a backtracking algorithm which fixes
signatures on coline cycles one after the other, where all possibilities according to the
above characterization are considered as long as there is no conflict with previously fixed
patterns of coline cycles. It turned out that our method is similar to a method of Bokowski
and Guedes de Oliveira [BGdOOQO] for the uniform case. However, our method is more
general as it is capable to handle all oriented matroids in arbitrary rank, including non-
uniform oriented matroids. Furthermore, our method introduces two new concepts which
are important for practical efficiency. First, the backtracking algorithm ushsamic
orderingof the coline cycles in order to reduce the amount of enumeration. Second, the
algorithm uses aoline adjacency matriwhich reflects the mutual intersection of coline
cycles; by this the amount of time spent for one step in the backtracking method becomes
very small. Computational experiments show that our method generates only relatively
few infeasible situations where a partial assignment of patterns to coline cycles cannot be
completed to a localization, which finally explains its practical efficiency.
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Part Il Applications

Chapter 6presents a catalog of oriented matroids up to isomorphism whose computation
is based on the methods presented earlier in this thesis. We discuss the organization of the
catalog which uses basis orientations (chirotopes) for the encoding of the representative of
every isomorphism class. Furthermore a method is presented which generates the catalog.
Finally we give an overview of the results, also indicating CPU time usage and memory
usage. We consider this catalog to be a major step forward as it is the first such catalog
which includes not only uniform oriented matroids but all cases in arbitrary dimension.

Chapter 7discusses how the catalog of oriented matroids from Chapter 6 can be used
for the generation of complete listings of the combinatorial types of point configurations,
so-calledorder typeqdGP83]. Figure 9 shows an example of such a list; see Figures 7.4
and 7.5 for the analogous listings with 5 and 6 points. These listings are the first such

Figure 9: The 3 order types with 4 non-collinear point®h

listings which also include degenerate point configurations. We use these listings for an
alternative proof of the classifications of polytopesuy6r, AS84, AS85] and show their
potential in resolving geometric conjectures.

Chapter 8considers the problem of generating all combinatorial types of hyperplane ar-
rangements, which we calissection typesFigure 10 shows an example of such a list;

N N

AN A%

Figure 10: The 3 dissection types with 3 non-parallel hyperplangs in

for arrangements with of more lines see Figures 8.3 and 8.4. We give complete listings
which again are first of this kind as they include all degenerate cases. We consider these
listings to be an interesting source for future investigations.

The catalogs of oriented matroids, point configurations, and hyperplane arrangements are
available online omttp://www.om.math.ethz.ch



What's in a name?
ROMEO AND JULIET (2,2)

Chapter 0

An Introduction to Oriented Matroids

0.1 A First Tour of Oriented Matroids

Oriented matroidsan be viewed as an axiomatic combinatorial abstraction of geometric
structures such as real hyperplane arrangements, convex polytopes, or point configura-
tions in the Euclidean space. This abstraction reflects properties like linear dependencies,
facial relationship, convexity, duality, and optimization issues, and by this oriented ma-
troids have become an indispensable tool in discrete and computational geometry. Fur-
thermore, the theory of oriented matroids has connections and applications to many areas
of mathematics. A most comprehensive presentation can be found in the monograph of
Bjorner, Las Vergnas, Sturmfels, White, and Ziegler [BI\8S]. For the present thesis

the introduction of the following pages will be sufficient. Readers who are already famil-
iar with oriented matroids may read this chapter in parts; later chapters will refer to this
Chapter O.

We start this first tour of oriented matroids with a look at tfzene The notion “matroid”
was first used by Whitney [Whi35], created from “matrix” by adding the suffix “-oid”,
hence meaning “resembling of a matrix” or “having the form of a matrix”. Let us consider
the following matrix:

001 -1
A= 100 O
111 1

There are several ways to see the matroid structure definédd Bne way is to consider
the four column vectors

0 0 1 -1
Al=| 1], A=]0],A3=]| 0], Au= 0
1 1 1 1

as vectors ifR3 and study their linear (in-)dependence as follows: the linear subspace
generated byAsz and A4 containsA,, but notAg; in other words A; is linear independent
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from { Az, A4}, but notA,. We call the index s€2, 3, 4} aclosed subsair aflat. The set
A of all flats, in the case of our example

A= 1{0,{1}, {2}, (3}, (4, (1,2}, {1, 3}, {1, 4}, {2,3,4}, {1, 2,3, 4}},

defines a matroid (see also Section 0.3). For everyflat different from the full index
setE := {1, 2, 3, 4} the subspace spanned by the veciyse € X, is contained in some
2-dimensional subspad#y of R3. This hyperplanéix can be chosen such thag € Hy

if and only if e € X (in general there are many choices fé%). ObviouslyHx can be
described by a normal vectare R3. Thene e X if and only if x and A are orthogonal.
If we definey? := {e| ye = 0} for a vectory, then the above considerations lead to

A= {(ATx)? | x € R®

(note thatE corresponds tx being the zero vector). This description4f i.e., of the
matroid, is easily extended to amientedabstraction of the spacial dependencie\of
..., A4 For every hyperplane, i.e., for everye RS, we also consider foAgx # 0
whetherAlx < 0 or AIx > 0, i.e., whether sigilAlx) = — or signAlx) = +.
Defining sign vectors sigly) componentwise, the set of sign vectors

F(A) = {sign(ATx) | x € R3}

gives a description of all these “oriented dependencies” of the column vectéis\ok

call (E, ¥ (A)) the oriented matroid defined by ad a sign vector it (A) a covector

For the example of the matrik given above, Table 0.1 shows the complete list of cov-
ectors inF (A), grouped together by dimension of the linear subspaces defined by the
corresponding flats.

| Dimension0 || Dimension1 || Dimension2 || Dim.3 |
++—+|-——+-|lo+-+]0-+-|[00-+]00+-]|[0000O
—+—+|+—-+—||0——+| 0++—||0+0+|0-0-
+——+|—++-||+0—+|-0+-|/0++0|0--0
———+|+++-||-0-+|+0+—-||+000[-000
t+++|————||0+++| 0———
—+++|+-———||++0+| ——0—

—+0+|+-0-

+++0|-—-0

—+4+0|+--0

Table 0.1: List of covectors itF (A)

Instead of studying the relative positions of the vect@gsw.r.t. oriented hyperplanes
which are defined by normal vectoxse R3, we consider now theentral hyperplane
arrangementHs, ..., Hs} defined by takingAe as the normal vector dfle for e € E.
Each hyperplanél, is oriented, where\. points to the+ side. Then every point € R3
defines a sign vectoX e {—, +, 0}F by its relative position in the arrangement, i.e.,
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Xe = 0 if x is contained inHe, Xe = + if X is on the+ side of He, and Xe¢ = —
otherwise. ObviouslyXe = sign(Al x), and the set of all sign vectors obtained in this
way is exactly the sef (A) of covectors as defined above.

Before we illustrate sets of covectors lige(A) further using other geometrical models,
we have closer look at the properties®fA). It is obvious that forx being the zero
vector,0 := (0 ... 0) = sign(ATx) € F(A). Furthermore, replacing any by —x
shows thatX € # (A) implies—X € £ (A), where— X denotes the sign vector obtained
by reversing all signs in the obvious way. Slightly more advanced, we may consider
linear combinations of vectors, y. For arbitrary smalk considerz := x + ¢y and the
corresponding sign vectodé := sign(ATx), Y := sign(ATy), andZ := sign(AT z), then
foree E

Sign(ATx)e = Xe if Xe # 0,

o T o T T —
Ze = SIgN(A" 2)e = SIgN(A X + €A Y)e = { sign(ATy)e = Ye otherwise

This proves that foiX, Y € F (A) also the sign vectoZ = X o Y belongs toF (A),
where we defin&Z := X oY by Ze = Xe if Xe # 0 andZe = Y, otherwise. We call
X oY thecompositiorof X andY. Finally consider two vectors, y which are separated
by (at least) one hyperplandg, i.e., Xe = —Ye # 0 for the corresponding two sign
vectorsX, Y € ¥. We say thae separates X and #nd denote by (X, Y) the set of all
elements which separad¢andY. Let z denote the intersection point &f; and the line
connectingk andy. Then the corresponding sign vectr:= sign(ATz) € 4 satisfies
Ze = 0andZ; = (XoY) s for all non-separating elements Let us list all the properties
which we found satisfied b := £ (A):

(FO) 0 e ¥.
(F1) If X € ¥ thenalso-X € F.
(F2) If X,Y € ¥ thenalsoX oY € F.

(F3) If X,Y € ¥ ande € D(X,Y) then there existZ € ¥ such thatZ = 0 and
Zi = (XoY)sforall f € E\D(X,Y).

In the theory of oriented matroids the properties (FO) to (F3) play the rad&ioms An
oriented matroids defined as a paitt = (E, ¥) of a finite setE and# < {—, +, 0}F

which satisfies (FO) to (F3). The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. In fact, there are several equivalent axiom systems of oriented ma-
troids some of which we will introduce in the following sections.

An immediate question is whether all oriented matroids (as defined by (FO) to (F3)) have a
realization(as given by a matriA or a central hyperplane arrangement). The answer was
found to be that this is not the case, and it is known that the problem to decide whether
an oriented matroid is realizable (also calletear) or not isNP-hard [Mng88, Sho91].

As the axioms of oriented matroids can be checked in polynomial time, there is not poly-
nomial characterization of realizable oriented matroids unfess NP. By this, the
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abstraction of oriented matroids is of great importance also for the study of the realizable
cases. Furthermore, the realization problem is decidable and there are practical methods
which work satisfactory for smaller instances, at least in the uniform case [RG92].

Will see in the following how oriented matroids can be illustrated using a geometric (or
topological) model. The intersection of a central hyperplane arrangefienite € E}

with the unit ball centered at origin definessphere arrangemenf = {S. | e € E},

where again every sphegis oriented (as induced by the corresponding hyperpk)e

The sphere arrangement defined by the above example is illustrated in Figure 0.1. The

Figure 0.1: Sphere arrangement

sphere arrangemedtinduces a cell complesC on the unit spher&”. Every pointx on

¥ defines a sign vectoX € {—, +, 0}E by Xe = 0 if x is on &, otherwiseXe = +

(or Xe = —) if x is on the+ side (or— side, respectively) o&; let ¥ (8) denote the

set of all these sign vectors. It is not difficult to see thaf ifs induced by a central
hyperplane arrangement defined by a ma#ias above, therF(8) = F(A) \ {0}

Hence sphere arrangements give again an illustration of sets of cov&atayor £ (4§).

More general, gseudosphere arrangemefit= {& | e € E} in the Euclidean space

R9+1 s a collection ofid — 1)-dimensional topological spheres on thelimensional unit
spheres?, where every spherg& is oriented (i.e.S has a+ side and a- side) and the
intersection properties of the topological spheres are as in a (linear) sphere arrangement,
e.g., the intersection of any number of spheres is again a sphere and the intersection of an
arbitrary collection of closed sides is either a sphere or a ball (for details see Definition
5.1.3 in [BLVS™99]). As for (linear) sphere arrangements, a pseudosphere arrangement
4 induces a cell compleX’ and a set of sign vectots (§) which satisfies (FO) to (F3).

The so-calledopological Representation TheorefiFolkman and Lawrence [FL78] and

its simplification by Mandel [Man82] assure that also the converse is true: For every set
F of sign vectors which satisfies (FO) to (F3), there exists a pseudosphere arrangement
such that (8) = # \ {0}. We illustrate in Figure 0.2 how a pseudosphere arrangement
may look (again for the same set of covectors as above).
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Figure 0.2: Pseudosphere arrangement

Sphere arrangements (or pseudosphere arrangements) of corresponding cell cofiplexes
are very helpful illustrations of many considerations concerning oriented matroids. Ob-
viously there is a one-to-one correspondence between the céllsaimd the sign vectors
in £ (8). We list this correspondence for our example in Table 0.2 (see Figure 0.2 for the
naming of the cells). The relationship of faces in the cell comgtegan be read easily

| Dimension0 || Dimension 1 | Dimension 2 |
Aloo—+||Al00+—||AB|0+—+|AB|0—+—||ABD|++—+| ABD| ——+—
B|0+0+||B|0-0—-||AC|0——+||AC|0++—||ABD|—+—+ | ABD| +—+—
C|0++0||C|0——0||AD|+0—+|[AD|-0+—||ACD|+——+|ACD| —++—
D|+000|D|-000||AD|-0~+|AD|+0+—||ACD|~——+||ACD| +++—
BC|0+++|BC|0———||BCD|++++||BCD| ————
BD|++0+|[BD|-—0—||BCD|—4++|BCD|4+———
BD|-+0+|BD|+-0—
CD|+++0|CD|-—-0
CD|-++0|CD|+--0

Table 0.2: Faces and corresponding sign vectors

from the sign patterns itF: e.g., we see tha@AB is a face of AB D since all nonzero
signs of( 0 + — +) are the same 6+ + — +), the covectors corresponding B and
ABD. This gives rise to the following definition: For two covectofsY € ¥ we say
that X is a face of Yor X conforms to denoted byX < Y) if Xe # 0 impliesXe = Ye.
The setF ordered by the facial relatios, with the zero vectod as smallest element and
an additional artificial greatest elementforms a lattice# , the so-calledig face lattice
(see Figure 0.3). The big face latti#e coincides with the face lattice of the cell complex
K, and if we define rankX) by the height of a fac in ¥, then rankX) — 1 equals the
dimension of the corresponding facetdn

The big face lattice® can be considered as a representation ottmbinatorial typeof
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Figure 0.3: The big face lattic€

K or the corresponding oriented matroid. Renamingétabeling the elements ok, or
reorientingthe elements, i.e., interchangirgand— side, does not affect the face lattice.
This remains true if we consider the notilabelingin a more general sense than usual:
elements, f which are identical (i.e.Xe = Xt for all X € ¥) can be replaced by one
representing element, or similarly elements can be doubled; furthermore one may delete
(or introduce) elementswhich are constantly O (i.eXe = O for all X € #). We will see

later (in Chapter 1) that the big face lattice is sufficient to reconstruct an oriented matroid
up to labeling and orientation. In formal language, relabeling of an oriented matroid
M defines itgelabeling clasd.C(M), reorientation itgeorientation clasOC(M), and
relabeling and reorientation iisomorphism clas$C(.M). Two oriented matroids are
isomorphic if and only if they have the same face lattices.

We have seen that matrices define not only matroids but also oriented matroids, and from
this we developed geometric interpretations and models such as central hyperplane ar-
rangements and sphere arrangements, which stand for realizable oriented matroids. Fur-
thermore, every oriented matroid can be represented by some pseudosphere arrangement.
There are more geometric objects such as point configurations or affine hyperplane ar-
rangements (see also the last two chapters of this thesis) whose combinatorial abstractions
lead to (realizable) oriented matroids. In fact, in the history of oriented matroids such ob-
jects which we used for illustration or as a representation of oriented matroids were the
starting point and the motivation for the definition and investigation of axioms systems
such as the covector axioms (F0) to (F3). These investigations have shown that many
of the objects of study have mutual interpretations under which axiom systems become
equivalent. By this, seemingly different objects have been found to be part of one theory,
which we callthe theory of oriented matroidsNe will develop in the following some
aspects of this theory, also showing several axiom systems and their equivalence.
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0.2 Covector Axioms

The combinatorial abstractions of the geometric examples in the previous Section 0.1
showed a number of elementary properties. In this section we take such elementary prop-
erties as the set of axioms of the theory of oriented matroids which will be developed
in the following. The axioms which we use in this section for the definition of oriented
matroids have been studied jointly by Edmonds, Fukuda, and Mandel [Fuk82, Man82]
which proved their equivalence with the cocircuit axioms [BLV78]. We have chosen the
other direction and will introduce cocircuit axioms later (see Section 0.6).

Let E denote a finite set, e.gg = {1, 2, ..., n}. We callE the ground seande € E an
element In the examples of Section 0.1 these elements correspond to the hyperplanes in
central hyperplane arrangements or spheres in sphere arrangements. As before, a vector
X e {—, +, 0}F is calleda sign vectoon E; we may not mention the ground g&tif it is
determined from the context, e.g., we denot®by (0 0 --- 0) € {0}F the sign vector

with all signs equal to zero. F® < E we denote byXs the sign vector if—, +, 0}S
obtained fromX by (Xg)e := Xefor e € S, and similarlyX\ Sdenotes the subvector &f

onE\ S. We will write X\ efor X\ {e} etc. where convenient. Theegative— X of a sign
vector X is defined by(— X)e := —Xe for e € E, where—(—+ 0) = (+— 0). For

S C E let5 X denote the sign vector di with (s X)s = —Xsand(gX) \ S= X\ S.

The supportof a sign vectotX € {—, +, O}F is the setX := {e € E | Xe # 0}, and its
complementX?® := {e € E | Xe = 0} is called thezero supporbf X. Furthermore call

the setsX™ := {e € E| Xe = +} and X~ := {e € E | Xe = —} the positive support

and thenegative supportrespectively. For two sign vectods andY on E we define the
compositiorof X andY (denoted byX o Y) as before by

[ Xe if Xe#0,
(XOY)G'_{Ye otherwise
so,eg(———+++000)o(-+0—-+0—-+0)=(———+++-—+0).

Note that the composition is associative, i.e(X oY) o Z = X o (Y o Z), but not
symmetric:X oY =Y o Xifandonlyif D(X,Y) :={ee€ E | Xe = —Ye # 0} = ¢; for
ee D(X,Y), we say thaiX and Y disagree in er e separates X and.Y

The following definition of an oriented matroid was already given in Section 0.1:

0.2.1 Definition (Covector Axioms of Oriented Matroids) An oriented matroidM is a
pair (E, ¥) of a finite setE and a setF C {—, +, 0}F of sign vectors (calledovector}
for which the followingcovector axiomgFO0) to (F3) are valid:

(FO) 0e ¥.
(F1) If X € F then—X € ¥. (symmetry)
(F2) If X, Y € FthenXoY € F. (composition)

(F3) ForallX,Y € ¥ ande e D(X,Y)
there exist<Z € ¥ such that
Ze = 0and
Zi = (XoY)sforall f € E\ D(X,Y). (covector elimination)
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The facial relationship (e.g., in sphere arrangements) is abstracted as follows: For two sign
vectorsX, Y € {—, +, 0}F we say thatX conforms to Yor X is a face of Y, denoted by

X <Y, if Xg # 0impliesXe = Ye, €.9.,(0 + — 0) conforms to( 0 + — +) but not to

(0 + + +); in addition we writeX < Y if X <Y andX #Y.

The covector elimination axiom (F3) can be replaced by weaker and stronger variants.
Actually, there are many such variations of the axioms known from the literature, and
they are very helpful for the proofs of the statements which follow later. Our formulations
(F3¥) and (F®) follow Fukuda [Fuk82, Fuk00b] and are also closely related to the so-
calledY -approximation of YMan82] (see also Proposition 3.7.10 in [BLYS9]) and to

the strong vector eliminatiofBLV78, Man82] (see also Theorem 3.7.5 in [BLVS9]),
respectively.

0.2.2 Proposition Let ¥ C {—, +, O}F be a set of sign vectors satisfyi(ig0), (F1), and
(F2). Then the three statemerfis3), (F3°), and(F3¥) are equivalent, where

(F¥) ForallX,Y € F and@ # SC D(X,Y)
there exise € SandZ € # such that

Ze =0and
Zs < Xsand
Zi = (XoY)sforall f € E\D(X,Y). (conformal elimination)

and

(F3¥) ForallX,Y € £ andee D(X,Y)andf € X\ D(X,Y)
there existZ € # such that

Ze =0and
Zs = X¢ and
Zg € {Xg,Yg, 0} forallg € E. (weak elimination)

Proof Let # < {—, +, 0}F be a set of sign vectors satisfying (F0), (F1), and (F2). We
will show (F3)= (F3) = (F3") = (F3), where the implication (F3= (F3") is obvious
with S = {e}.

Assume that (F3) is satisfied and show{F3.etbeX,Y € F andy # S C D(X,Y)
and prove the claim by induction d8|: For |S| = 1, (F¥) follows directly from (F3).
For the inductive step assurfe > 1 and that (F9 is satisfied for alll £ S € D(X, Y)
with |S| < |S|. Choose ang € Sand setS := S\ e. By induction there exist&’ € ¥
such thatZy, < Xg andZ; = (XoY)¢ forall f € E\ D(X,Y). If e ¢ D(X, Z)
thenZ := Z’ is sufficient to prove (F3. Otherwise apply (F3) tX, Z’, ande: There
existsZ € ¥ suchthatZe = 0andZ; = (X o Z')¢ forall f € E\ D(X, Z). Remark
that Zs < Xs follows by Ze = 0 < Xe andZg = Xg (sinceZg =< Xg implies
S C E\ D(X, Z'), thereforeZg = (X o Z')g = Xg, where the last equality follows
fromS € D(X,Y) € X). Finally, f € E\ D(X,Y) implies thatZ; = (X oY)y,
therefore alsdf € E\ D(X, Z')andZ¢ = (X0 Z')f = (XoY)s.

Assume that (F3) is satisfied and show (F3). Letb€Y € £ ande e D := D(X,Y).
Forall f € X\ Dletbezf e ¥ such thatzd = OandZ]f — X andforallg € E
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is Zg € {Xg, Yg, 0}. Similarly for f € Y\ D letbeZ" ¢ # such thatZd = 0 and
2! =Yt andZg € {Xg, Y. 0} forall g € E. LetZ € & denote a covector which is the

composition (in some arbitrary order) of all thedé andZ'; if X € D andY < D then
X = =Y andZ := 0Ois sufficient. ObviouslyZe = 0. Consideg € E\ D andf € X\D.
If Zg # (XoY)gthenzg = 0. Similarly for f € Y\ D, if Z§ # (XoY)qthenZg = 0.
Forg e XUY\ D thisimpliesZg = Z§ = Xg = (XoY)g0r Zg = Z§ = Yg = (XoY)q.
Forge X°NY°%we concludezg =0forall f e X\ D andZ(; =0forall f € Y\ D,
henceZg = (XoY)g=0forallg e E\ D. u

0.3 Matroids

We have started the first tour of oriented matroids in Section 0.1 with matroids, which can

be viewed as an abstraction of linear dependencies of vectors. This section introduces ax-
ioms of matroids and discusses fundamental notions such as independent sets, bases, and
rank in matroids. It will be straightforward to extend these notions to the context of ori-
ented matroids as every oriented matroid defines a matroid when omitting the orientations
of signs. A more comprehensive introduction to matroids can be found in the monographs

of Welsh [Wel76] and Oxley [OxI92].

0.3.1 Definition (Matroid Flat Axioms) A matroid M is a pair(E, ) of a finite setE
and a set4 C 2F of subsets of (calledflatsor closed sefsfor which the followingflat
axioms(M1) to (M3) are valid:

(M1) E € A.
(M2) If X,Y € AthenXNY € A. (intersection)
(M3) ForallX,Y € A,ec E\ (XUY),andf € X\Y

there existZ € A suchthaee Z, f ¢ Z,andXNY C Z. (exchange)

The matroid flat axioms are satisfied by any sé@s defined by matrice&in Section 0.1:
a flat X € 4 is a subset of column indices of a given matAxsuch that the subspace
spanned by the column vectofg, e € X, does not contain angs with f & X.

The study of the relation of oriented matroids and their underlying matroids is as old as
the notion of oriented matroids (e.g., see [FL78]):

0.3.2 Proposition Let M = (E, ¥) be an oriented matroid. ThefE, {X°| X € F}) is
a matroid.

Proof Let.M = (E, ) be an oriented matroid and sét:= {X°| X € #}. Itis obvious
that (M1) and (M2) follow directly from (FO) and (F2). In order to show (M3) let be
X,Y e F such that there existe E \ (XU Y% andf € X%\ Y. We can assume that
Xe = —Ye # 0 (otherwise replac¥ by —Y), soee D(X,Y)andf € E\ D(X, Y). By
(F3) there existZ € F such thatZe = 0 andZg = (X o Y)gforallg € E\ D(X,Y),
especiallyZs = (XoY); = Y; # 0andX° N Y® c z% This shows thaZ® e
satisfies the flat axiom (M3) fox?, YO, e, and f. n
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0.3.3 Definition (Underlying Matroid) Let M = (E, ) be an oriented matroid and set
A = {X9| X € F}. Then we call the matroidE, +) the underlying matroid ofy(,
denoted bym.

A matroid is callecbrientableif it is the underlying matroid of an oriented matroid. There
exist matroids which are not orientable, and the question whether a matroid is orientable
or not isNP-complete [RG99]; for details we refer to Sections 6.6 and 7.9 of [BLYS.

The first fundamental notion of the theory of matroids isspanoperation. For matroids

as introduced in Section 0.1, where a given ma#tidefines a set of flatg, the span of a
some subseb C E of column indices is the set of indices whose corresponding column
vectors are contained in the subspace spanned by the vectors accorfling to

0.3.4 Definition (Span) Let M = (E, 4) be a matroid an® C E a subset oE. The set

span, (S) := ﬂ X
X e A
SCc X

is calledthe span of S in M Usually, if M is defined from the context, we writ® for
spany, (S).

0.3.5Lemmalet M = (E, 4) be a matroid and & E. Then

(i) Se A, (flat)
(i) Scs, (hull)
(i) S=S, and (closure)
(v) SC Rforal SCRCE. (monotonicity)

Proof Let M = (E, 4) be a matroid. Properties (i) and (ii) follow by definition, where
for (i) also the matroid intersection axiom (M2) is important. For (iii) observe that by (i)
and the definition follows € S, where (ii) impliesS C S. Finally considelS € R C E:

If X e 4 satisfiesR € X then alsaS € X, hence by definitiors € R. n

The definition of the span operation can be used for the definitiomdependent seend
basesf matroids. Again, using the relation of matrices and matroids as discussed before,
independent sets and bases of column vectors nicely illustrate the corresponding notions
in matroids.

0.3.6 Definition (Independent Sets, Based)et M = (E, ) be a matroid. Asef C E
is calledindependenor an independent set of M S\ e # Sfor all e € S. For any set
S C E we call asubseB C S a basis of & B is a maximal independent subset®fA
basis ofE is also calledh basis of M and the set of all bases df is denoted byB.

0.3.7 LemmalLet M = (E, 4) be a matroid and & E.
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(i) Sisanindependent setof M if and onlBif e € S\ eforallee S.

(i) Sis anindependent set of M if and only if for every & there exists X A such
that S\eC X F e.

(i) Every subset of an independent set is independent.

(iv) Let S be anindependent setand & \ S. Then 3 e is independent if and only if
edgS.

(v) For Se 4 and B an independent subset of S, B is a basis of S if and dBlyifS.

(vi) There exist_s a basis B & such that BC S. For any SC T C E there exists a
basis Bof T suchthatBC B'C T.

Proof For (i) considerS C E ande € S. The monotonicity of the span operator (see
Lemma 0.3.5) implieS\ e C S, and furthermore € S\ ewould imply S < S\ eand
henceS = S\ e. Therefore the claim follows by the definition of an independent set.
For (ii) consider (i) and the definition of an independent setS it independent then
X := S\ e is sufficient; otherwise&S\ e = S for somee e S, which contradicts the
existence oiX € A suchthatS\eC X F e.
For (iii) considerR C S, whereSis an independent set M. Using (i) and Lemma 0.3.5,
R\ec S\ec S\ eforeveryee S,soR\eC R\ eforeveryee RC S, i.e.,,Ris
independent.
For the proof of (iv) letS be independent anele E\ S. If e € SthenSUe = S(see
Lemma 0.3.5 and the definition of the span), i®!) e is not independent. Otherwise
e ¢ S. Show thatSU eis independent, i.e(SUe)\ f € Sue\ f forall f € SUe.
Obviously this is true forf = e, so considerf € S. Because off ¢ S\ f we can apply
(M3)to X := S, Y :=S\ f, e andf: There exist&Z € A suchthae e Z, f ¢ Z, and
XNY =S\ f c Z. Thisimplies(Sue)\ f € Z ¥ f and by this the claim.
Assume thaS € A4 andB C Sis an independent set. By Lemma 0.B5C S = S.
(iv) implies thatB be can be extended withifato a larger independent set if and only if
S\ B # @, which proves (v).
The proof of (vi) follows by use of (iv): SeB® := ¢ C S. If BO = Sthen isB° a basis of
SasBis obviously independent. Otherwi® < S, so we can seB' := B°Ue c Sfor
somee € S\ BY; Blisindependent by (iv). IB1 = Sthen isB?! a basis ofS. Otherwise
repeat the same argument: foe 1,2, ... setB'*1 .= B' Ue C Sforanye € S\ Bi;
obviously this process has to stop for some | S|, thenB! = SandB := B is a basis of
S. If S# T we extendB in the same way to a basi of T, and obviouslyB € B’ C T.

|

In the proof of Lemma 0.3.7 (vi) a basis of a &t E was constructed incrementally

by extending an independent sub&tof S by an arbitrary elemerg € S\ Bi. Such
methods which incrementally construct a “solution” by augmenting a “partial solution”,
namely by adding any element which satisfies some (simple) criterion, are getiedly
methodslt is remarkable that problems which allow greedy methods can be characterized
as having a matroid structure.
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The following basis exchange property is important for the basis cardinality theorem,
which will us allow to define the rank of a flat, furthermore it introduces an adjacency re-
lation of bases and the corresponding operation to move from one basis to a neighboring
basis, which is called pivot operation Basis adjacency is not only important in proofs
(e.g., when we consider basis orientations in Section 0.9) but also for the degn of
oting algorithms(e.g., see [Bla77, Fuk82, FFL99]) as in the context of oriented matroid
programming (Section 0.8).

0.3.8 Proposition (Basis Exchange PropertylLet M = (E, 4A) be a matroid, Xe 4,
and B, B’ bases of X. Then: Foralle B\ B’ there exists fe B’\ B suchthatB\e)U f
is a basis of X.

Proof Let M = (E, 4) be a matroidX € 4, B, B’ bases ofX, ande € B\ B’. Remark
thate ¢ B\ e (see Lemma 0.3.7) anB’ ¢ B\ e (otherwiseX = B' € B\e ¥ e, a
contradiction), hence there existse B’ \ (B \ e). We will show that(B\ e) U f is a
basis ofX. By Lemma 0.3.7 (iv) igB \ e) U f independent, so it remains to show that
(B\ e) U f spansX. For this it is sufficient to show thae X’ := (B \ e) U f because
thenB € X' and(B\e)U f € Ximply X = B € X' C X, i.e., X’ = X. Assume

e & X'. Apply the flat exchange axiom (M3) t§’, Y := B\e, eec E\ (X' UY), and

f € X"\ Y: There exist&Z € A suchthaee Z, f ¢ Z,andX'NY =B\ e C Z. But
thenB C Z, which leads to the contradiction =B € Z ¥ f. n

0.3.9 Theorem (Basis Cardinality) Let M = (E, A) be a matroid and X 4. All bases
of X have the same cardinality.

Proof Let M = (E, 4) be a matroid andX € . For any based3, B’ of X set
d(B, B’) :=|B\ B’| +|B’\ B|. Let B, B’ be bases oK. If d(B, B’) = 0 thenB = B/,
so|B| = |B’|. If d(B, B’) > 0thenB # B’, and (after possibly interchangigjand B’)
there exist® € B\ B’. By the basis exchange propertyBs:= (B \ ) U f a basis of
X for somef e B’\ B, and by constructionB| = |B| andd(B, B") = d(B, B) — 2.
ReplacingB by B and repeating the above arguments (at mBstimes), we find a se-
guence of bases of all of which have cardinalityB| where the last basis is equal B,
which provegB| = |B/|. [

0.3.10 Definition (Rank in Matroids) Let M = (E, 4) be a matroid anK € A. The

uniquely determined cardinality of a basis %fis calledthe rank of X in M written as
ranky (X). We call ranKM) := ranky (E) the rank of M In addition we define for
S C E the rank of S in Moy ranky (S) := ranky (S).

Note that by definition rani(4) = 0.

0.3.11 Corollary Eet M = (E, 4) be a matroid and §§ T C E. The length¢ of
a maximal chainS =: X° ¢ X1 c ... € Xf := T with pairwise different sets
X0 X1 ..., Xt e Aist =ranky(T) — ranky(S).

Proof The claim is trivially true ifS = T, so assumé # T. ConsiderX'~1, X! € 4
with X'~ G X'. Itis sufficient to show that ramk(X') —ranky (X' ~1) > 1 if and only if
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there existZ € 4 such thatx'~* G Z ¢ X'. Let beB a basis ofX' %, and choose any
ee X"\ X'~1, then by Lemma 0. 3.7 (|v) iB Uean independent set. Th&hU e ¢ X if
and only if ranlm(X') — ranky (X'~1) > 1, and thenXi—1 CZ:=BUe& X On the
other hand, if there exis@ € 4 such thatx' —1 GZ§ X then by LemmaO 3.7 (viB
can be extended to a ba8sof Z, which also can be extended to a baBfsof X', hence
ranky (X') — ranky (X'=1) > 1. n

The largest non-trivial flats, i.e., flats which are maximal4n, {E}, are those of rank

r — 1, wherer := rank(M). For matroids defined by matrices of full rank, these flats
correspond to subspacesk# which have dimensiod — 1; this motivates to call these
flatshyperplanesThe name otolinesis used for the flats of rank — 2:

0.3.12 Definition (Hyperplanes, Colines)Let M = (E, ) be a matroid, furthermore
setr := rank(M). The flats of rank — 1 are calledhe hyperplanes of Mthe flats of
rankr — 2 the colines of M The set of hyperplanes of a matroid is denotedty

We introduce in the following another axiomatic system for matroids based on hyper-
planes. These hyperplane axioms will be needed in the proof of Theorem 5.2.4.

0.3.13 Definition (Hyperplane Axioms) Let E be a finite set and? < 2F a set of sub-
sets ofE. We call # a set of hyperplanegand only if the followinghyperplane axioms
(H1) and (H2) are valid:

(H1) If X,Y € # suchthatX C Y thenX =Y. (support)

(H2) ForallX,Y € # with X #Y andee E \ (XUY)
there exist&Z € # such that
eecZandXNY C Z. (hyperplane exchange)

0.3.14 Proposition A set# C 2F satisfies the hyperplane axiortt$1) and (H2) if and
only if it is the set of hyperplanes of a matroid.

Proof We first show that the hyperplane exchange axiom (H2) can be replaced by the
following stronger version:

(H2®) ForallX,Y e #,ec E\ (XUY)andf € X\Y
there existZ € # such that
ec”Z, f¢gZ andXNY C Z. (strong hyperplane exchange)

For this assume that there exi6tY € #,ec E\ (XUY),andf € X\Y such that there
isnoZ e #withee Z, f ¢ Z,andX NY C Z; chooseX andY such thafX NY]|is
maximal. By (H2) there existX’ € # suchthat € X’ andX NY C X’, but according
to the above assumptioh € X'. If Y \ X € X’ thenY C X’ and by (H1)Y = X/, in
contradiction tof € X"\ Y, so there existg € Y \ (X U X). Furthermoree € X"\ X,
and asf € XN X' impliesXNY & XN X'; by the maximality of X N Y| there exists
Y' e #suchthag e Y,eg Y, andXN X CY'.Nowee E\(YUY'), feXnX
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impliesf € Y'\'Y,andbyg ¢ XNY S YNY' > gand the maximality argument there
existsZ’ € # suchthaee Z', f g Z',andXNY C YNY' C Z/, acontradiction. This
proves that the strong hyperplane exchange)i42satisfied by any set of hyperplanes.
Let # < 2F be a set satisfying (H1) and (H2), hence also{H®2Ve set

A= {XtnonXfe>1 X esforalli e(l,..., )} U(E)

and show thatE, +) is a matroid, then obviously with¢ as its set of hyperplanes. (M1)
and (M2) are satisfied by definition. LetbeY € A,ee E\ (XUY)andf € X Y.
Clearly X # E andY # E. By definition there exisKX', Y € # suchthatX € X' 3 e
andY C Y! ¥ f.If ee YI thenZ := Y! is sufficient for (M3), otherwise by € X'\Y!
and (H2) there exist& € # suchthaee Z, f ¢ Z, andXNY < X' nY! € Z, which

proves (M3).
It is not difficult to see that the hyperplane axioms are satisfied by the set of hyperplanes
J¢ of a matroidM, as# is the set of maximal sets iM different fromE. [ |

We conclude this section by introducing an important notion which characterizes a special
class of oriented matroids which corresponds to non-degeneracy in geometry:

0.3.15 Definition (Uniform Matroid, Uniform Oriented Matroid) A matroid M is
called uniform if the set of hyperplanes df1 is the set of all(rank(M) — 1)-subsets
of E. An oriented matroid is calledniformif its underlying matroid is uniform.

Note that in a uniform matroidM a setH < E is a hyperplane oM if and only if

|[H| = rank(M) — 1. This is much stronger than the property in general matroids which
says that every hyperplane contains at least(@®hk— 1 elements. Uniform matroids of
rankr can also be characterized as matroids wih > r and some subs& C E is
independent if and only ifS| < r; equivalently, a matroid of rank is uniform if the set

B of bases is the set of altsubsets oE. Note that in the original paper of Bland and Las
Vergnas [BLV78] uniform matroids have been calfegk and in Folkman and Lawrence
[FL78] uniform oriented matroids have been caltahpleoriented matroids; we will use
the notionsimpledifferently (see Definition 1.1.3).

0.4 Minors

This section introduces minors of matroids and oriented matroids and the fundamental
operations ofleletionandcontractionby which minors are constructed. In the case of a
matroid defined by a matriA as introduced in Section 0.1 these operations have intuitive
geometric explanations. A deletion minor is obtained by simply deleting some of the col-
umn vectors of the matrix. In a sphere arrangement the deletion operation corresponds to
the deletion of spheres. The contraction operation is less trivial as it includes a projection
to the orthogonal space of the column vectors which are deleted. In a sphere arrangement
the contraction minor is the (lower dimensional) sphere arrangement in the intersection of
the spheres chosen to contract on. Later (in Chapters 4 and 5) we will discuss the question
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of how oriented matroids can be extended. Sloppily speaking this is an operation in the
opposite direction of constructing minors, and not surprisingly the study of minors is of
great importance for the extension problem. The constructions of matroids such as minors
and extensions are presented in more detail by Brylawski in Chapter 7 of [Whi86].

The formal definitions of deletion and contraction are as follows:

0.4.1 Definition (Deletion and Contraction Minors) Let M = (E, 4) be a matroid and
R C E. We define theleletion minor of M w.r.t. Ro be the pair

M\ R:=(E\ R, 4A\R), whereA \ R:={X\ R| X € A},
and thecontraction minor of M w.r.t. Ro be the pair
M/R:= (E\ R, A/R), whereA/R:={X\ R| X € AandR C X}.

Let M = (E, ¥) be an oriented matroid arfd € E. We define theleletion minor ofmM
w.r.t. Rto be the pair

M\ R:=(E\R,F\R), where¥ \ R:={X\ R| X € ¥},
and thecontraction minor ofM w.r.t. Rto be the pair

M/R:= (E\ R, £/R), whereF /R:= {X\ R| X € ¥ andR < X°}.

Note that by definition the operations of deletion and contraction commute, i.e., for any
matroid M = (E, 4) and disjoint setR, S € E holds: (M \ R)/)S = (M/9 \ R;
analogously, the same is true for oriented matroiisUsually we will omit parentheses
and writeM \ R/Sfor (M \ R)/Setc.

It is straightforward to prove the following

0.4.2 Proposition Deletion minors and contraction minors of matroids (oriented ma-
troids) are matroids (oriented matroids, respectively). The underlying matroid of an ori-
ented matroid minor is the corresponding minor of the underlying matroid:
M\R=M\RandM/R = M/R.

The rest of this section considers the rank of deletion and contraction minors and of flats
(or covectors) in minors. These consideration concerning rank are very important in many
inductive proofs.

Again it is helpful to remember sphere arrangements for an illustration§ beta sphere
arrangement ilRd andS, R C E sets of indices of some of the spheregsinThe state-
ment of the following lemma then translates as follows: If the spherésane deleted,
the rank spanned by the spheresSiy R remains the same. However, if we contract to
the spheres iR, the rank spanned by the projection of the sphere&\imR is determined
by the difference of ranks corresponding3@ R andR.

0.4.3Lemmalet M = (E, 4) be a matroid, RS C E. Then:
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(i) ranky\r(S\ R) =ranku(S\ R).
(i) rankm/Rr(S\ R) = ranky (SU R) — ranku (R).

Proof (i) Let B € S\ Rbe a basis of spgp(S\ R) in M (cf. Lemma 0.3.7 (vi)). We
show thatB is a basis of spajp r(S\ R) in M \ R. B is independent itM, hence
(by Lemma 0.3.7 (ii)) for ale € B there exist&Z € 4 suchthatB\ e C Z ¥ eand
alsoB\eC Z\ R#esinceB C E \ R. Thisis equivalent to: for ak € B there
existsZ’ € A\ RsuchthatB\ e C Z’' ¥ e, soB is independent iiM \ R. On
the other hand spg(B) = span,(S\ R) implies that for allZ € A4 with B € Z
alsoS\ RC Z, hence forallz’ € A\ Rwith B € Z" alsoS\ R C Z’, therefore

span,\r(B) = spany\r(S\ R.

(i) Let B’ € Rbe a basis of spgp(R) andB < SU R a basis of spap(SU R) in M
such thatB’ < B (cf. Lemma 0.3.7 (vi)); remark thé8 \ B’ € E\ B’ = E\ R,
We show thatB \ B’ is a basis of spap,r(S\ R) in M/R. B is independent in
M, hence (by Lemma 0.3.7 (ii)) for al € B\ B’ there existZ € 4 such that
B CB\eC Z Feandalso(B\ (BBUe)UR C Z ¥ esinceB’ C Z
impliesR C Z. This is equivalent to: for akk € B\ B’ there exist&Z’ € A/R
such thattB\ B) \ e € Z' # e, soB\ B’ is independent itM/R. On the other
hand spa (B) = span,(SU R) implies that for allZ € A with R € Z and
B C ZalsoSURC Z, hence forallZ € A withRC ZandB\ B’ C Z also
SUR C Z, by thisforallZ’ € A/Rwith B\ B’ € Z’ alsoS\ R C Z’ and therefore

spany,r(B \ B') = span,,r(S\ R). u

Now it is straightforward to determine the rank of the minors:

0.4.4 Corollary Let M = (E, 4A) be a matroid, RC E. Then:

() rank(M \ R) =ranky(E \ R).
(i) rank(M/R) = rankM) — ranky (R).

In the illustrations of oriented matroids it is very natural to considedihensiorof sub-

spaces spanned by vectors or of faces in sphere arrangements. For example, a region of
highest dimension in a sphere arrangemeiitdrhas dimensiod — 1; in the correspond-

ing oriented matroid, this region is represented by a covector with maximal support, and
the corresponding flat has rank 0 in the underlying matroid. It is convenient to define the
rank of covectors and the dimension of oriented matroids as follows:

0.4.5 Definition (Rank and Dimension in Oriented Matroids) Let M = (E, ) be an
oriented matroid.The rank ofM, written as rankM), is the rank of the underlying ma-
troid. For a covectoiX € F we define rank (X) := rank(.M) — rankﬂ(xo) to bethe
rank of X in.M. Thedimensiorequals rank-1, i.e., dim(.M) := rank(.M) — 1 and, for
X e F, dimy (X) := ranky (X) — 1.



0.4 MINORS 31

By the above definition, the dimension of a covector equals the dimension of the corre-
sponding face in a sphere arrangement (cf. Sections 0.1 and 0.7).

We extend the results concerning rank of matroid minors to oriented matroids:

0.4.6 Corollary LetM = (E, ¥) be an oriented matroid, B E, X € . Then:

(i) rank(sM \ R) = ranky (E \ R).

(i) rank(M/R) = rank(.M) — ranky (R).
(i) rank,nr(X \ R) = rank(M \ R) — ranky (X°\ R).
(iv) ranky/r(X \ R) = ranky(X), provided that RS X0,

Proof

(iii) ranksr(X \ R) = rank(M \ R) —ranky\ r((X \ R)?)
= rank(M \ R) — rankyn r(X%\ R) = rank(M \ R) — ranky (X°\ R).

(iv) ranky/r(X\ R) =rankM/R) — rankM_/R((X \ RY
= rank(M) — ranky (R) — ranky ,r(X%\ R)
= rank(M) — ranky (R) — (ranky (X° U R) — ranky (R))
= rank(M) — ranky (X° U R) = rank(M) — ranky (X°) = ranky(X). n

Of special importance are minors w.r.t. a single element. We distinguish elements with
special properties w.r.t. deletion and contraction, namely so-chilgas and coloops

Loops are elements which “never affect”. they are contained in every flat. In the case of
matroids defined by matrices the column vector corresponding to a loop is simply the zero
vector. Hence, deleting a loop or contracting to a loop does not change anything. Coloops
are elements which “always affect”. the rank of a collection of elements increases or
decreases whenever a coloop is added or deleted, respectively. In the case of matroids
defined by matrices the column vector corresponding to a coloop has the property that all
other vectors are contained in a proper subspace not containing the coloop vector. In a
sphere arrangement a coloop corresponds to a sphere such that all other spheres intersect
in a common point which is not on the coloop sphere. Loops and coloops are related by
duality (see Section 0.5).

0.4.7 Definition (Loop and Coloop) Let M = (E, A) be a matroid ané € E. We call
ealoop of Mif e € X for all X € A. We calle acoloop of Mif E \ e € 4. Let
M = (E, F) be an oriented matroid arele E. We calle aloop (coloop) ofM if eis a
loop (coloop, respectively) oM. If M or M is determined from the context we will not
mentionM or M and simply saye is a loopor e is a coloop

We will extend the notion of loops later to arbitrary sets of sign vectors.

The following results concerning single element deletion and contraction minors follow
from the general case discussed above:
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0.4.8 Corollary Let M = (E, 4A) be a matroid, es E, and SC E. Then:

rank(M) if e is not a coloop

(I) rank(M \e) = rankl\/l(E \ e = { rank(M) — 1 otherwise

rank(M) if e isaloop

(i) rank(M/e) = rank M) — ranky (e) = { rankM) — 1 otherwise

ranky (S) if span,(S\ e) = span, (S,

(iii) rankwm\e(S\e) = ranku (S\e) = { ranky (S) — 1 otherwise

. . _ | ranku (9 if e is aloop
(iv) rankwv/e(S\ €) = ranky(SUe) — ranky (e) = { ranky (S) — 1 otherwise

provided that e S.

0.4.9 Corollary LetM = (E, ) be an oriented matroid, e E, X € #. Then:

rank(.M) if e is not a coloop

(i) rank(# \ €) = ranky (E \ &) = { rank.M) — 1 otherwise

rank(.M) if e is a loop

(i) rank(M/€) = rank(M) — ranky (€) = { rank(M) — 1 otherwise

ranky (X) + 1 if e not a coloop andspan, (X% \ e) # X°,
(iii) ranke(X\& = § ranky(X) —1 if e a coloop andspan, (X°\ &) = X°,
rank (X) otherwise

(iv) rankye(X \ €) = ranky(X), provided that % = 0.

Proof (i) rank ne(X \ € =rank(M \ e) — rankﬁ(xO \ e), where
__ | rank(Mm) if eis not a coloop
rankiAM \ e) = { rank.M) — 1 otherwise
ranky (X°) if span, (X°\e) = X°,
ranky (X% — 1 otherwise
which implies the claim. [ ]

and rank, (X°\ e) = {

0.5 Duality

Duality is one of the outstanding notions in the theory of oriented matroids. However,
in the present thesis duality does not play an important role; actually only few of the
later results need duality. Nevertheless, for completeness we give in the following a short
introduction to some basic notions and results of duality.

Before the definitions in terms of oriented matroids are given, consider (orthogonal) du-
ality in real vector spaces. Two vectorsy € RY are orthogonal if their scalar product
> i Xiyi equals to zero. An obvious property of orthogonal veckongis that ifx;y; > 0
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for somei thenxjy; < O for somej # i. This property characterizes orthogonal spaces
for sign vectors:

0.5.1 Definition (Orthogonal, Dual) Let E be a non-empty finite set. Two sign vectors
X,Y € {—, +, 0}F on E are calledorthogonal(denoted byX x Y) if either X N Y = ¢

or there aree, f € X NY such thatXe = Ye and X = —Y;. Theorthogonal spacéor
dual spacgof a set¥ of sign vectors ork is the set

Fr={Xe{-, +0F| XxYforalY e F}.

As explained above, if two vectors y € RY are orthogonal then also the corresponding
sign vectors sigfx), signy). Furthermore sigfV/)* = sign(V 1) for any linear subspace
V and its orthogonal spadé’, where sigiV) := {signx) | x € V} (this is not obvious,
but we do not discuss a proof here).

For a sign vectotX C {—, +, 0}E we write X < 0 if Xe € {—, 0} for all e € E, and
similarly X > 0 if —X < 0. Furthermore, we writX < OorX > 0if X <0orX >0

and all signs are different from 0, respectively. The same notation is extended to single
signs (e.g.Xe > O is equivalent toXg = +).

The following duality results are mainly due to Bland and Las Vergnas [BLV78]. The
presentation follows basically Fukuda [FukOOb].

0.5.2 Lemma Let (E, #) be an oriented matroid, K E. Then(¥ \ R)* = ¥*/R and
(F/R*=F*\ R.

Proof (¥ \ R* = #*/Rand(F/R)* D F*\ R are satisfied by alfF c {—, +, 0}F,
which can be proved easily. For the proof(&/R)* € #* \ R we will need (F1) and
(F3). It is sufficient to discuss the cadge| = 1 since then by induction fgRR| > 1 and
anyr € R follows

(F/R* = (F/(R\1)/D)* = (F/(R\r)*\r =(F*\(R\r)\r=F"\R

So assum® = {r} for somer € E. LetbeY € (¥ /r)*, we will showY € F*\r. Set

F= = {XeF| X =0},

F> = (XeF|Xy+ >0 Xy- <0, X% > 0},

F< = [XeF|Xy+>0,Xy- <0, X <0},

FE = {Xe F|thereexist, j € Y \r suchthatX; = Y;, Xj = —Yj}.

Consider a sign vectof’ C {—, +, 0}F such that’ \ r = Y; we will show thatY’ ¢ F*
for an appropriate choice of € {—, +, 0}, which provesy € F*\ r. Itis obvious that
Y e (F7)* andY’ € (F*)* independent from the choice ¥f. If X € F \ (F=UF )
thenX € F7 UF=~or—-X € £~ U F=, and by (F1) it is sufficient to prove that
X e F7 U F = implies X % Y’ for an appropriate choice of € {—, +, 0} (which will
be independent oX, of course). IfF = = ¢ then by (F1)Xy # O for all X € £~ since
otherwise—X € =, and it is sufficient to se¥, = —. If ¥~ = ¢ then similarly it is
sufficient to sety; = +. Assume for the rest of the proof th&t> # ¢ andF < # 0.
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ConsiderX € £~ and X’ € #=. By (F3) there existZ’ € ¥ such thatZ = 0 and
Z/ = (XoX))j foralli € E\D(X, X). ObviouslyY € E\D(X, X") and henc&{,, >0
andZ{_ < 0. Furthermor&Z := Z'\r € ¥ /r impIiesZ Y, and henceXy = X{, = 0.
ThIS istrue forallX ¢ £~ andX’' € ¥, i.e,, ={Xe¥F| Xy =0, X; > 0} and

={XeF|Xy=0 X <0}, hence itis sufﬁment to séf/ = [ ]

The following result can be viewed as a generalization of the Farkas’ Lemma (e.g., see
Section 7.3 in [Sch86]) to oriented matroids. We formulate it here as a 3-painting property:

0.5.3 Proposition (3-Painting [BLV78, BLV79]) Let (E, ¥) be an oriented matroid,
and let RUG UW = E be a partition of E (i.e., R G = J etc.) andre R. One
might think of the partition as a coloring of the elements: R, G, and W then stand for red,
green, and white, respectively. Then exactly on@ @ind(ii) holds, where

(i) there exists X ¥ suchthat X > 0, Xgr > 0, Xg <0;

(ii) there exists Ye #*suchthatY > 0,Yr>0,Ys <0, Yw =0.

Proof It is clear by the definition of orthogonality that (i) and (ii) can not be satisfied at
the same time. Assume that (i) is not satisfied, we prove (ii), firsGoe . We will
need for the proof only axioms (F1) and (F2).

If for all X € # there exist, ] € Rsuch thatX; = 4 and X; = — then defineY by
Ye = + if e € RandYe = 0 otherwise. Thery proves that (ii) is valid. Otherwise (F1)
implies thatR := {X € ¥ | Xr > 0} # . Choose an)X’ € R such thatX}; is maximal,
by (F2) this means thafr € X forall X € R. As (i) is not satisfied and by assumption
G = ¢, X/ = 0. DefineY by Yo = + if e € R\ X andYe = 0 otherwise. Obviously
Y > 0,YRr > 0, andYy = O; it remains to proveﬁat € F*. LetbeX e F.If Xe R
thenXNY = ¢, henceX x Y. If X ¢ RandX NY # #, then there exist, j € R\ Xi
with X; = + andXj = — (if no suchi, j exist then by (F2)X’ o X or X’ o (—X) belongs
to R, contradicting the maximality oX ) this provesX x Y.

Observe that for alb C E the setg ¥ := {g X | X € ¥} also satisfies (F1) and (F2),
furthermore(s ¥)* = 5(F)*. The proof for generab follows then from the proof for
(E, ) wheref = 5¥,f =r,R=RUG,W =W, andG = ¢. n

A stronger formulation of the 3-painting property is the following well-known variation:

0.5.4 Proposition (4-Painting [BLV78, BLV79]) Let (E, #) be a an oriented matroid,
and let RUGU BUW = E be a patrtition of E (the additional set B might be thought of
as the set of elements colored in black) and R. Then exactly one ¢ and(ii) holds,
where

() there exists X # suchthat X > 0, Xr >0, Xg <0, Xg =0;

(ii) there exists Ye #*suchthatY > 0,Yr>0,Ys <0, Yw =0.
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Proof It is obvious that not (i) and (ii) are satisfied at the same time. Assume that (i)
does not hold, then there is ' € #/B such thatX; > 0, Xy > 0, andX; < 0.

By Farkas’ Lemma (i.e., Proposition 0.5.3) applied to the oriented ma6i@ there
existsY’ € (¥/B)* such thaty > 0,Y; > 0,Y; < 0,Yy, = 0, and by Lemma 0.5.2
(F/B)* = F*\ B, hence there existé € F* such thaty” = Y \ B, which shows that

(i) is satisfied. [ |

0.5.5LemmaletbeF C {—,+,0},Y € F*and ec Y such thatsY € £*. Then also
Y e F*whereY\e=Y\eand ¥ =0.

Proof Letbe# C {—,+,0}F, Y € #* ande € Y such thatsY € F*. DefineY’ by
Y'\e=Y\eandY; = 0. LetbeX € F. By definition ofY, Y € F*, eitherXNY = ¢,
in which caseX N Y’ = ¢ and henceX x Y’, or there exisg, h,i, ] € X NY such that

Xg = Ygand Xy = —Yh andXj = gY; andXj = —(gY)j. Because oé € D(Y,¢Y)
it is not possible thay = i = eorh = j = e, hence there aré € {g,i} \ e and
j"ef{h,j} \esuch thatXj; =Y/, and X = —Yj’/, which provesX x Y’. This holds for
everyX € ¥, which provesy’ € F*. ]

0.5.6 Theorem (Dual Oriented Matroid [BLV78]) Let (E, ) be an oriented matroid.
Then(E, %) is also an oriented matroid.

Proof Let (E, ) be an oriented matroid and consider the dual sg&¢e Obviously

0 € F*, furthermore the symmetry in the definition of orthogonality implies that (F1)
holds forF*.

For (F2) consideY, Y’ € £*,thenX x Y implies X N Y = ¢ or that there exist elements
e, f e XNY € XN (YooY such thatXe = Ye and X; = —Yi; In the latter case
follows X x (Y o Y) from Ye = (Y o Y)e andYs = (Y o Y)¢. In the first case, i.e.,
XNY = ¢, we similarly consider the implications o % Y': eitherX N Y’ = @ which
implies X N (YoY’) = @, or there exise, f ¢ XNY < XN (YoY) such that
Xe=Y,=(YoY)eandXs = —=Y; = —(Y o Y')¢, which in both cases proves that
Xx(YoVY).

It remains to show that (F3) is satisfied BY. LetbeY, Y’ € F*ande € D := D(Y, Y’).
We have to show that there exisfse F* such thatZe = 0 andZ; = (Y o Y')¢ for

all f € E\ D; when we defineS := D\ eandY := Y o Y/, this is equivalent to
Y\ D € F*/e\' S = (F \ e/9* (the last equality follows by Lemma 0.5. 2). Let be
X € ¥ suchthatX \ D € ¥\ e/S i.e., Xs = 0. We have to show thaiX \ D)*(Y\ D).
ObviouslyX x Y and X « Y’ imply X x Y, and because ofs = Oalso(X \ S) % (Y \ 9),
and similarly(X \ S) * ((Y/ oY)\ S). SinceY \ D = (Y oY) \ D, Lemma 0.5.5 implies
that(X \ D) % (Y \ D). n

0.5.7 Definition (Dual Oriented Matroid) Let M = (E, ¥) be an oriented matroid.
Then we call the oriented matroid* := (E, #*) the dual ofm.

0.5.8 Proposition (Dual of Dual [BLV78]) M** = M for every oriented matroiou .

Proof Let M = (E, ¥) be an oriented matroid. The proof f6f C F** is trivial. We
showF** C ¥ by induction omn = |E|. If n = 0 then¥ = F* = {0}, where0 is the
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zero vector with empty ground set.nf= 1then¥ = {(0)} andF™* = {(—), (+), (0)}
or vice versa. Therefor& = F** forn < 1. Assumen > 2. Let beX € F**; show
X e . 1f X0 ¢ choosee € X2, then by Lemma 0.5.2 and induction

X\ee F*/e=(F*\e)*=(F/e)" = F/e
ThenX e F. OtherwiseX® = @. For everye € E holds, similarly as above,
X\ee F*\e=(F'/e)* =(F\e" =F \e

LetbeX’ € # suchthatX’\ e= X\ e. If X; = XethenX' = X € . If X; = 0 then
letfor f € E\ebeX” € F suchthatX”\ f = X\ f. ThenX' o X" = X € &. Finally,
if Xiz = —Xe, the sign vector, X' € #** only differ ine € D(X, X’), which implies
by Lemma 0.5.5 thaK” defined byX” \ e = X \ eand X7 = 0 also is in¥**. Then
X" € F (see above), hencé¢’ o (—X') = X € F. [

In Definition 0.4.7 we have defined loops and coloops. The name of a coloop is motivated
by the following fact, where the prefix “co-" stands for “dual’:

0.5.9 LemmaletM = (E, ¥) be an oriented matroid and e E. Then e is a loop of
M if and only if e is a coloop of the duali*.

Proof eis a loop ofM if and only if Xe = O for all X € ¥. By definition of the dual
space, there i¥ € F* whereY \ e = OandYe # 0. Hencee is a coloop ofM*. The
reverse direction is also very simple. [ |

The previous results lead to the following:

0.5.10 Corollary LetM = (E, ) be an oriented matroid. Then the rank of the dual is
determined byank(M*) = |E| — rank(:M).

Proof The proofis by inductionon := |E|. If n = 0 then ranktM) = 0 = rank(:M*). If

n > Olete € E. We assume by induction that raiii( \ e)*) = |E \ €] —rank(:M \ e); by
Lemma 0.5.2 this is equivalent to raik \ e) + rank(.M*/e) = |E| — 1. We consider the
two cases that is a coloop ofM or not; in either case, the combination of Lemma 0.5.9
and Corollary 0.4.9 (i) and (ii) leads to raflk) +rank.mM*) —1 = |E| — 1, which implies
the claim. [ |

Our approach for proving the result of Corollary 0.5.10 is rather unusual, normally it is a
corollary of the following fact:

0.5.11 PropositionLet M = (E, ¥) be an oriented matroid. A set B E is a basis of
M ifand only if E\ B is a basis ofm*.

Proof Setn := |E| andr := rank(.M) = rank:M). Let B C E be a basis oM, hence
|B| = r. By Corollary 0.5.10 rankM™*) = rank:M*) = n —r, hence it is sufficient to
show rank(E \ B) = n —r. By Corollary 0.4.6 (i) ranj (E \ B) = rank.M* \ B),
and by Lemma 0.5.2 rait(* \ B) = rank((.M/B)*). Then Corollary 0.5.10 implies
rank((M/B)*) = |E \ B| — rankM/B) = n —r since rankt/B) = 0 asB is a basis
of M (see also Corollary 0.4.6 (ii)). L8 € E be such thak \ B is a basis ofM*. By
the above result i8 = E \ (E \ B) a basis oftM** = M (cf. Proposition 0.5.8). |
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0.6 Cocircuits

We have a first look at cocircuits, the minimal covectors w«.in & \ 0. In an ori-

ented matroid defined by a sphere arrangement as introduced in Section 0.1, cocircuits
correspond to cells of dimension 0. We show several properties of cocircuits, especially
that the set of cocircuits determines the set of covectors, and that sets of cocircuits can
be characterized by axioms, i.e., there are cocircuit axioms which are equivalent to the
covector axioms of oriented matroids.

0.6.1 Definition (Cocircuits) For an oriented matroidd = (E, ¥) we call
D:=min(F\0) ={V e F|forall X e F\OsuchthatX <V is X =V}

the set ofcocircuitsof M.

Many of the following results come from (at least similar) results in [BLV78]:

0.6.2 Lemma Let M = (E, ¥) be an oriented matroid, X ¥, and ec X. There exists
a cocircuit V € D of M such that V< X and \& = Xe.

Proof Let M = (E, ¥) be an oriented matroid{ € #, ande € X. Consider the set
F :={Y € F]Y < XandYe = Xe} which is not empty sinc&X € . We have to
show thatf contains a cocircuit. Le¥ € # be minimal w.r.t. the conformal relation
<, i.e., thereis ndf € £ with Y < V. We show thalV ¢ D leads to a contradiction.
Assume that there exisW/ € ¥ \ Owith W < V < X. Because of the minimality of
V in £ we concludeW, = 0. Remark thaD (V, —W) = W # @, therefore conformal
elimination (F3) w.r.t. V, —W, andD := D(V, —W) implies that there exist € D
andZ € ¥ suchthatZz; = 0,Zp < Vp,andZ\ D = (V o (—W)) \ D. From this
follows Z < V (otherwise there existg € E \ D such that 0% Zg # Vg, henceVy =0
andZg = —Wy # 0, in contradiction toNy < V), Z # V (sinceZs = 0 # V¢) and
Ze = Xe (because oV = 0is Ze = (V o (—W))e = Ve = Xe # 0). But Z contradicts
the minimality ofV in &, which completes the proof. |

0.6.3 Proposition (Conformal Decomposition [BLV78])Let M = (E, ) be an ori-
ented matroid. Every covector X ¥ \ 0 has a representation of the form

X =V%oVZ20...0V"

where each Vis a cocircuit of M conforming to X, i.e., Ve D and V' < X for all
i €{1,...,¢}; thereis always such a conformal decomposition of X With|X].

Proof Let M = (E, ¥) be an oriented matroid and € & \ 0. By Lemma 0.6.2 there
exists for everye € X a cocircuitV® € D such thatv® < X andV{ = Xe. Obviously it
is sufficient to sefV1, V2, ..., Vf} ;= {V®|ee X}. n

0.6.4 Corollary (Cocircuits Determine Covectors) The setdD of cocircuits of an ori-
ented matroidM = (E, ) determines the set of covectors by

F={X|X=VoV2c...0ViforV' € D suchthatV < X, ¢ > 1} U {0}.
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Proof The covector composition axiom (F2) makes sure that every composition of cocir-
cuits is in¥, on the other hand conformal decomposition (Proposition 0.6.3) proves that
every covector (excel® can be generated by composition of cocircitswith V' < X.

|

0.6.5 Definition (Cocircuit Axioms) Let E be a finite set andd C {—, +, 0}E a set of
sign vectors ore. We say thatD is a set of cocircuit$f and only if the followingcocircuit
axioms(CO0) to (C3) are valid:

(CO)0¢ D.
(C1) If X e Dthen—X € D. (symmetry)

(C2) If X,Y € D suchthatX C YthenX =Y or X =-Y. (minimality of support)

(C3) ForallX,Y € D with X # —Y ande € D(X,Y)
there exist&Z € O such that
Ze =0and
Zi € {X¢,Ys,0}forall f € E. (cocircuit elimination)

0.6.6 Proposition (Strong Cocircuit Elimination [BLV78, FL78]) Let £ be a set of
sign vectors on E satisfyin@0), (C1), and(C2). Then(C3)is equivalent to

(C3®) ForallX,Y e Dandee D(X,Y)andf € X\ D(X,Y)
there existZ € D such that

Ze =0and

Z¢ = Xt and

Zg € {Xg, Yg, 0} forallg € E. (strong cocircuit elimination)
Proof We refer to the proof of Theorem 3.2.5 in [BLVS9]. ]

The above set of cocircuit axioms of oriented matroids are usually taken as the defining
set of axioms of oriented matroids (as it was the case in the original work of Bland and
Las Vergnas [BLV78]). We have chosen the covector axioms for the definition of oriented
matroids. The study of covector axioms is mainly due to Edmonds, Fukuda, and Mandel
(see [Fuk82, Man82]).

0.6.7 Proposition A setD of sign vectors satisfies the cocircuit axio(@9) to (C3) if
and only if it is the set of cocircuits of an oriented matroid.

Proof Let O be a set of cocircuits of an oriented matr@id, ), and we show that
(CO) to (C3) are satisfied. (CO) follows by definition and (C1) from the symmet#y. if
For (C2) consideiX,Y € & € F with X C Y. If D(X,Y) = #thenX <Y, and
by definition X = Y. If D(X,Y) # @ then by conformal elimination (F3there exist
eec D :=D(Y,X)andZ € F suchthatZe = 0 andZp < Yp andZs = (Y o X)¢
forall f e E\D. By X € YandZ. = 0 # Ye follows Z < Y, henceZ = 0. Then
X\D=Y\D=0,s0X =-Y. (C3) finally follows from (F3).
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Let D be a set of cocircuits, i.ed) satisfies (C0O) to (C3). Defing according to Corol-
lary 0.6.4. We show thaf satisfies the covector axioms (FO) to (F3), i€, ) is
an oriented matroid whose set of cocircuits obviouslydis (FO) and (F1) follow by
definition and the symmetry i®. In order to show (F2) we prove that is equal to

F={(X|X=VoV2c...0ViforV' e D, ¢> 1)U {0}.

ObviouslyF € #. LetbeX e F, we show thatX ¢ F leads to a contradiction, hence
F C F. AssumeX ¢ F, henceX # 0, i.e., X is of the formX = V1o ... 0 V¢ for
Vi € D and some > 1. Obviously there exist&’ € #\0such thatX’ < X, and we can
choose such X’ with maximal|X'|; then X’ < X. For the smallest € {1, ..., £} with
Vi ¢ X'is X' < Xo V' = X, hence we can choose soivies D with X’ < X' oV < X
such thatD(V, X)|is minimal. If D(V, X) = #ithenV < X and henceX’ < X'oV € F,
contradicting the maximality ofX’|. So there exist € D(V, X) € X'andf € V \ X..
By definition of # there existW' € D with W' < X’ andX’ = Wlo ... o WK for
somek > 1, and there € D(V, W!) for someW!. By the strong cocircuit elimination
(C3) (see Proposition 0.6.6) applied ¥ W/, e, and f € V \ D(V, W}) there exists
V' € D such thatVy = 0 andV; = Vs andVé € {Vg,Wd,O} forall g € E, so
D(V’, X) € D(V, X) \ g, but sinceX” < X' o V' < X this contradicts the minimality
of |ID(V, X)|. For (F3) it is sufficient to prove (F3 (see Proposition 0.2.2). Let be
X, Ye F,ee D(X,Y),andf € X\ D(X,Y). By definition there exist¥ € O such
thatVs = Xt andV < X. If Ve = 0 then this proves (F3, otherwiseVe = Xe. Again
by definition, there exist§/ € D such thaWe = Yo andW < Y. Apply (CF) to V, W,
e,andf € V\ D(V,W): There existZ € D C F suchthatZze =0, Zs = Vi = Xy,
and for allg € Eis Zg € {Vg, Wy, 0} € {Xg, Yy, O}. [ ]

We introduce in the following a stronger elimination axiom which will be used in Chap-
ter 5 for the discussion of single element extensions.

0.6.8 Definition (Modular) Let D be a set of sign vectors such tHxt° | X € D} is the
set of hyperplanes of a matroM. Then we callX, Y € £ modular in Mif X°NY%is a
coline (i.e., rank; (X° N Y%) = rank M) — 2).

The above definition e.g., applies to sets of cocircuits.

0.6.9 Proposition (Modular Cocircuit Elimination [LV78b, LV84]) A set D of sign
vectors is a set of cocircuits if and only iK® | X € D} is the set of hyperplanes of
a matroid M andD satisfies the cocircuit axion{€0), (C1), (C2), and

(C3M Forall X,Y € D which are modularin M and & D(X, Y)
there exists Z= O such that
Ze=0and
Zi € {X¢,Ys,0}forall f € E. (modular cocircuit elimination)

Proof It is clear that (C3) implies (CB). Let D be a set of sign vectors di which
satisfies (C0), (C1), (C2), and (€} and in addition assume thgX® | X e D} is the
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set of hyperplanes of a matroM. If rank(M) = 1 then (C3) is trivially fulfilled, and

if rank(M) = 2 then every two cocircuits with distinct support are modulaMinhence
assume raniM) > 3, so alsgE| > 3. The proof that (C3) holds is by induction on the
cardinality| E| of the ground set. Fag € E set

p0o . [ X\ gl X e D suchthat spap(X°\ g) # X% if gis a coloop ofM,
| {(X\g]|X e Dsuchthat spap(X°\ g) = X% otherwise

andD/g := {Xg\g| X € DsuchthatXg = 0}. Observe that the zero supports of
DO\9 andD/g are the sets of hyperplanes i\ g and M /g, respectively (see Corol-
lary 0.4.9 (iii) and (iv)); so ifD is a set of cocircuits the\9 andD /g are the sets of
cocircuits of the deletion and contraction minors wg.t.

We show now thatD \9 and$ /g satisfy (C0), (C1), (C2), and (3, hence by induction
also (C3). SinceD\9 = D/gif g is a coloop ofM (note that then there is a cocircuit
X e O with X = {g} what implies by (C2)Yg = OforallY € © \ {X, —X}), the
only nontrivial case is the proof tha\9 satisfies (C) wheng is not a coloop. Let be
X, Y e D9 modular inM \ g ande € D(X’, Y’). Let X, Y be the unique sign vectors
in O such thatX \ g = X" andY \ g = Y’; uniqueness is implied by (C2X andY are
modular inM if and only if spar, (X°NY%)\ g) = X°NYO (Corollary 0.4.9 (iii)), which
is clear unlesg € X°NY?, but thenX®NY? must be a coline since otherwise there exists
H € M suchthatk®nY® S H S X% henceg € Hand(X°NY%)\g < H\g S X%\ g
contradicts thaX’, Y’ are modular inM \ g. Therefore areX andY modular inM and

e € D(X,Y), and by (C8") there existZ € D such thatZe = 0 andZ; € {X;, Y;, 0}
forall f € E, especiallyX®n Y% c z9 Remark that spap(z°\ g) = Z° (otherwise
ge Z2%andz®\ g € M is a coline which is identical t&X° N Y° because oX° N Y? =
span, (X°NY%\ g) < span,(Z°\g) = Zz°\ g, in contradiction taz® > e ¢ X°NYO).
SoZ\ g e DY, which is sufficient to show (CB) for D9,

LetbeX,Y € D with X # —Y ande € D(X,Y). Remark that ranM) > 3 implies
|XO > ranky (X% = rank M) — 1 > 2 and similarly|Y°| > 2. If X UY # E then for
g e X°nY%find Z' € D/g such thatz, = 0 andZ; € {Xt, Y, 0} forall f € E\ g.
ThenzZ € D with Z \ g = Z' is sufficient to prove (C3). Otherwise we can assume

~ XUY =E.

Let beg € X. If gis a coloop ofM thenX® = E \ g (sinceX® € E\ g is a hyperplane),
and thenX U Y = E impliesY? = {g}, a contradiction taY°| > 2. So,g is not a coloop
of M, andg € X implies X \ g € H\9. This and symmetry ixX andY proves that
~X\ge D\ forallge X,and Y\ ge D\ forallg e Y.

Letbeg € (XNY)\e henceX' := X\ gandY := Y\ gin D9, which is a set
of cocircuits. AsX’ # —Y" ande € D(X’, Y’), one can apply cocircuit elimination to
X', Y’, ande: There existZ’ € H\? such thatz, = 0 andZ; e {X}, Y}, 0} for all

f e E\Qg. LetbeZ € D suchthatz\ g = Z'. ThenZe = 0 andZ; € {Xj, Y5, 0}
forall f € E\ g. If forsomeg € (XNY) \ eone findsZg € {Xy, Yy, 0} then (C3) is
satisfied. Otherwis&q & {Xg, Yg, 0} forallg e (XN Y) \ ehence

~ D(X,Y) = {e}.

Let beg € XO C Y. Since| X% > 2 there existsf € X\ g. X \ f # 0is a covector in
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the oriented matroid defined l®\?, so by Lemma 0.6.2 there exisxé € D9 such
that X’ < X\ f andX, = Xe. As showed abovey’ := Y \ g € HD\9. By cocircuit
elimination inD\9 applied toX’, Y/, ande there existZ’ € H"9 such thaz, = 0 and
Zt e {Xt,Y;, 0 forall f € E\g. LetbeZ € D suchthatZ \ g = Z'. ThenZe =0
andZ: € {X¢,Ys,0}forall f € E\ g, and because d(X,Y) ={e}isZ; < Xo¥Y
forall f € E\ g. EitherZ is sufficient to prove (C3), oZ4 & {Xg, Yy, 0} = {Yg, O} and
henceg € D(X oY, Z). If this case occurs for atj € X° then

~ for all g € XO there exists Z D suchthat Z2=0and D(X oY, Z) = {g}.

Letbeg € X% andZ e D such thatZe = 0 andD(X o Y, Z) = {g}. f YN Z0 = ¢

let beh € YO C Z. Again, as before, there exisis € D such thatZe = 0 and
D(XoY,Z)={h}. AsZ = —Z would imply Z = {g, h} andY® N z% = YO\ g # ¢,

we can assum@ # —Z. By cocircuit elimination inD /e applied toZ \ e, Z \ e, and
h and lifting the resulting vector, there exists € O such thatZ, = 0, Z{ = 0, and
Zt e {Zs, Z¢,0} for all f € E, which impliesZ’; € {Xt,Y¢,0} forall f € E\g.

Either Z’ proves (C3), oerq & {Xg, Yg, 0} = {Yg,0} andD(X o Y, Z) = {g}, and then
setZ := Z' € D, henceZe =0,D(X oY, Z) = {g}, andY° N Z° = {h} # ¢.

Let beh € YO z0 Apply cocircuit elimination inD/hto Y \ h, Z \ h, andg and
lift the resulting vector taD: There existsy’ € D such thatyy = 0, Yy = 0, and
Y: € {Ys, Z¢, 0 forall f € E, henceY; € {X¢, Y¢,0} forall f € E\ e. EitherYg=0
which completes the proof, of] # 0, i.e.,Yi = Ye. Then apply cocircuit elimination in
D/gto X\ g, Y\ g, ande and lift the resulting vector t@: There existZ’ € D such
thatZé =0, Zg =0, andZ € {X¢, Y;, 0} forall f € E, which finally proves (C3). m

0.7 Topes and the Big Face Lattice

This section introduces topes, the maximal covectofS.iW.r.t. a sphere arrangement as
introduced in Section 0.1, topes correspond to regions of maximal dimension. We discuss
the facial relationship of the covectors, resulting in the definition of the (big) face lattice,
and prove important properties of this face lattice. The namingpEsfollows Edmonds,
Fukuda, and Mandel (see [Fuk82, Man82]).

0.7.1 Definition (Topes) For an oriented matroid( = (E, ) we call
T :=maxF) ={T € F |forall X € F suchthafl < XisT = X}
the set oftopesof M.

An obvious characterization of topes (within a set of covectors) is the following:

0.7.2 Lemma A covector Xe F is a tope if and only if R is the set of loops ol(.

Proof Let M = (E, ¥) be an oriented matroid and € ¥. Let E? denote the set of
loops of M. ObviouslyE®? < XO. If E® G X°letbeg € X%\ E®andY € ¥ such that
Yg # 0. ThenX < X oY, henceX is not a tope. On the other hand Xf € ¥ is not a
tope then its zero support is obviously not equaEfd [ |
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The following is an unpublished result of Mandel (see Theorem 1.1. in [Cor85a, Cor85b]),
where our proof is similar to one in [FukOOb]:

0.7.3 Proposition (Topes Determine Covectorsyhe set7 of topes of an oriented ma-
troid M = (E, ) determines the set of covectors by

F={Xe{— +0F| XoTeTforalT e T).

Proof Let (E, ) be an oriented matroid ari its tope set. IfX € ¥ then (F2) implies
XoT € F forevery topel € 7, and by Lemma 0.7.2 we conclude théb T € 7.

For the other direction considet € {—, +, 0}F with the property thaX o T € 7 for all
T € 7; we have to show thaX € ¥. We will prove thatX o Y € F forall Y € F; the
proof is by induction on(X o Y)?|, and the claim finally will follow for|(X o Y)°| = | X9
sincethenXoY = X € F.

Consider firstY € # with |(X o Y)9| minimal: LetZ € 7 be any tope withy < Z, then
the minimality of|(X o Y)?| impliesX oY = X0 Z € ¥.

For the inductive step considat € F with [(X o Y)% not minimal and assume that
XoZ e ¥ forall Z e F with |(XoY)?| > |(X02Z)?. Itis clear that there exis® €
with [(X o Y)?| > [(X 0 Z)% andX oY < X0 Z,ie., XoY < XoZ € F; we can
assume that there is i@ € ¥ suchthatX oY < X o Z" < X o Z. Composition of
Y € FandZ € F givesY o Z € F with [(X o Y)? > [(X 0 2)% > |(XoY 0 2)7,
henceW' := XoY oZ e F and similaryW~ := XoY o (=Z) € F. From
XoY < XoYo Zfollows D := D(W",W™) # ¢, and by conformal elimination
applied toW™, W—, and D there existe € D andW < ¥ such thatWe = 0 and
Wp < W3 andWi = (WF o W™) = W{ forall f € E\ D, henceW < W*. Remark
(for the first and last equality of what follows) th{tC E\ D andX oY < X o Z:

XoW=W=<W"r"=XoYoZ=XoZ.

Furthermoree € (X% U W9 \ Z0 implies X o W < X o Z. On the other hand it is
easy to see thak o Y < X o W, and finally the above assumption @implies that
XoY=XoW=We¥. [

The following investigations of covectors and their facial relationship have been presented
explicitly in [Fuk82, Man82] and partially or implicitly in [FL78, LV80].

We extend the notion of a loop to arbitrary sets of signs vectors and define the notion of
parallel elements:

0.7.4 Definition (Loop, Parallel) Let ¥ be a set of sign vectors on a finite ground et
An elemente € E is calleda loop of # if Xe = 0forall X € #. Two element®, f € E
are calledparallel elements of if either Xe = Xt forall X € & or Xe = —X; for all
X € ¥ . Parallelness is an equivalence relation and definegatadlel classes of .

Note that for oriented matroids the new definition of a loop falls together with the former
one in the following sense: iM = (E, ¥) is an oriented matroid with set of cocircuits
D and set of tope§’, then all the following statements ferc E are equivalenteis a

loop of M, eis a loop of ¥, eis a loop ofD, eis a loop of7. Parallel classes can be
characterized in oriented matroids as follows:
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0.7.5 Lemma Let (E, ¥) be an oriented matroid. Two elementsfec E are parallel
elements ofF if and only if there exists no X F such that exactly one of@nd Xz is
equal to0.

Proof If for some X € ¥ exactly one ofXe and X¢ is equal to O there and f are not
parallel by definition. On the other hand, consigeand f that are not parallel, hence
either there existX € # such that exactly one ofe and X is equal to O (which would
prove the claim) or there exigt, Y € & such thatXe = X5 # 0 andYe = —Y; # 0.
After possibly interchanging and f we can assum&e = —Ye # 0 andXs = Y¢ # 0.
By weak elimination (F3) there existZ € ¥ such thatZe = 0 andZ; = Xt # O,
which proves the claim. [ |

The next lemma is the base of the investigation of the facial relationship in connection
with the rank of covectors:

0.7.6 Lemma Let (E, ) be an oriented matroid and X € ¥ such that X< Y. Then
the following three statements are equivalent:

(i) X%\ Y?a parallel class ofF / Y°.
(ii) rank (Y) — ranky (X) = 1.
(i) Thereisno Ze F with X < Z < Y.

Proof We proof the equivalence of the negated statements.

If S:= X%\ YCis not a parallel class of / Y° then by Lemma 0.7.5 there existf € S
andZ € ¥ such thaty® c Z9% and exactly one o and Z¢ is equal to 0. But then
X% 2 X%N Z% 2 YO, hence 1< ranky (X®) — ranky (Y®) = rank(Y) — ranky (X).

If rank 4 (Y) — ranky (X) > 1 then by Lemma 0.3.7 (vi) every bad#sof Y° in M can
be augmented bg € X°\ Y° such thatB U e is an independent subset %P, and then
X% 2 BUe 2 YO. There exist&Z € # such thatz® = BUe. SetZ' := XoZ € ¥,
thenX < Z’ and(Z’)° = BUe. If D := D(Y, Z') = ¢ thenZ’ < Y, which proves
the negation of (iii). Otherwis® # ¢, and we can apply conformal elimination @3
toY, Z/, andD: there existe € D andZ € ¥ such thatZe = 0, Zp < Yp and
Z\D=(YoZ)\D.Then(Z)° 2> Y%impliesZ\ D =Y\ DandbyD C Y\ X also
X < X o Z <Y, which proves that (iii) is not valid.

If there existsZ € F with X < Z < Y then there exise, f € S := X%\ Y? with
ec 2% ¥ f, and by Lemma 0.7.5 iS not a parallel class of / Y°. m

Before we investigate the face lattice of an oriented matroid we state the following so-
calledreorientation propertyr shelling propertyof tope sets:

0.7.7 Corollary Let (E, ) be an oriented matroid ant@ its set of topes. Then for all
X,Y e 7 with X # Y there exists a parallel classS D(X, Y) such thats X € 7.
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Proof Let be X,Y e 7 such thatX # Y. Let E® denote the set of loops of(. By
Lemma 0.7.2X = X = E\ EY soD(X,Y) # #. We apply conformal elimination to
X,Y,andD := D(X,Y): there existZ € ¥ such thatZ = 0 for somee € D and
Zp < Xp,andZ\D=(XoY)\D=X\D =Y\ D. We assume that is maximal
w.r.t. < with that property. TherZ < X andS:= z°%\ X° = X\ Z € D. Furthermore
there is noZ’ € F with Z < Z’ < X. By Lemma 0.7.6 isS a parallel class of /E°,
hence off’, and obviouslyZ o (=X) =ZoY =5X e T. [

We consider in the following the poset formed by covectors and the conformal relation
<. We have seen in Section 0.1 that a sphere arrangement and the corresponding oriented
matroid have the same face posets. If an artificial greatest eldneatded to the set of
covectors then the relatior defines a lattice (for an illustration see Figure 0.3):

0.7.8Lemmalet M = (E,F) be an oriented matroid. The partially ordered set
FM) = (F,x)isa Iattice,Awhere‘F = F U {1} and < is the conformal relation
extended by X 1forall X €

Proof Let M = (E, ¥) be an oriented matroiq and, <) be the partially ordered set
as defined apove. Consider any faceésy € F. We have to show the existence of
supX,Y) e Fandinf(X,Y) € ¥

(i) There exists a smallest element §¥pY) € ¥ such thatX < sup X, Y) and
Y <supX,Y): If X <YorY =< XthensupX Y) = Y orsugX,Y) = X,
respectively. Otherwis& andY are not comparable, therefoke Y € F \ {0}. If
D(X,Y) =0thensupX,Y)=XoY =Y o X € F, otherwise supX, Y) = 1L

(i) There exists a greatest element(XfY) € ¥ such that infX,Y) < X and
inf(X,Y) <Y:If X<YorY < Xtheninf(X,Y) = Xorinf(X,Y) =Y, respec-
tively. OtherwiseX andY are not comparable, therefoXe Y € # \ {0}. Consider
the (finite) set of lower bound&z?, ...,z = {Z € ¥ |Z < XandZ < Y},
which is non-empty as it contails Then ini X, Y) = Z1o...0Z¢ € # (note that
the order of theZ' does not affect the result of the composition). ]

0.7.9 Definition (The Big Face Lattice) For an oriented matroidd = (E, ¥) we call
the lattice® (M) = (£, <)Adef|ned in Lemma 0.7.8he face lattice ofM (also calledhe
big face lattice oitmM), and ¥ is calledthe set of faces of(.

We define rank (1) := rank(.M) + 1.

The following result says that the big face lattice of an oriented matsoits a graded
lattice (of length rankM) + 1); this is also called the Jordan-Dedekind chain property.

0.7.10 Theorem (Rank Equals Height in Face Lattice [FL78, LV80])In the face lat-
tice £ (M) of an oriented matroidit = (E, ), the height of any Xe ¥ is uniquely
determined as it equals the rank of X.hd.
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Proof ConsiderX,Y e ¥ with the property thatX < Y and there is n& € ¥ such
that X < Z < Y. We show ranf(Y) — ranky (X) = 1; this is sufficient to prove the
claim, as by definition rank(0) = rank(M) — rank (E) = rank(.M) — rank.M) = 0.
ForY # 1 the claim follows from Lemma 0.7.6. IY = 1 then X is a tope, hence
is X0 the set of loops ofM (see also Lemma 0.7.2) and therefore @(1)(0) = 0and
ranky (Y) — ranky (X) = (rank(M) + 1) — (rank(M) — 0) = 1. [ ]

0.7.11 Corollary (Rank and Dimension of Cocircuits and Topes)A covector Xe F

is a cocircuit if and only ifranky (X) = 1, or, equivalentlydim(X) = 0. The set of

zero supports of cocircuits is the set of hyperplanes of the underlying matroid. X is a tope
if and only ifrank (X) = rank(.M), or, equivalentlydim y (X) = dim(M).

0.7.12 Definition (¢i, i-Face, f;) Given an oriented matroid( = (E, #), we call for
i € {-1,...,dim(M)} a sign vector in

Fi={XeF|dmy(X)=i}

ani-face and we seff; := | ¥;| for the number of-faces.

Obviously alwaysf_; = 1; furthermorefy = |D| and fg = ||, whered = dim(M).

0.7.13 Theorem (Diamond Property [FL78, LV80]) Let M = (E, ¥) be an oriented
matroid and XY € ¥ such that X< Y andrank,(Y) — ranky (X) = 2. Then there
exist exactly two covectorstzz? e # with the property X< Z' <Y fori e {1, 2}.

The diamond property is called like that because of the diamond-like shape formed by
X, Z1, Z2,Y in the face lattice (see Figure 0.4).

Figure 0.4: Diamond property

Proof of Theorem 0.7.13ConsiderX,Y € ¥ such thatX < Y and rank(Y) —
ranky (X) = 2. By Theorem 0.7.10 there exisfs= Z! ¢ ¥ suchthatX < Z < Y,
which is a maximal chain. Obviously, Z € ¥, and by Lemma 0.7.6 i := X%\ Z%a
parallel class ofF / Z°.

If Y = 1thenZ is a tope and the question is how many togésatisfyX < Z': sinceS

is a parallel class of /Z° and hence off asZ? is the set of loops of, Z! := Z and

Z2 := X o (=Z) € F are the only two topes with this property (note that (F1) and (F2)
are needed foEZ? € 7).

If Y # 1then (by Lemma 0.7.6°\ YV is a parallel class of/Y?. By conformal
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elimination (F3) applied toY, —Z, andS = X%\ z% c D(Y, —-Z) = Z there exist

e c SandZ € ¥ such thatZe = 0 andZs < YsandZ; = (Y o (—2))s for all

f € E\ D(Y,—Z) = Z9 ReplacingZ by X o Z does not affect these properties since
X =D(Y,—2)\'S. ThenX < Z < Y (remark thatz® \ Y® € Z) andZ # Z. Since
Y0 c 7% ande € 29N S, whereSiis a parallel class of /Y?, Lemma 0.7.5 implies
Zs = 0, hencex® c 79U 70. Assume thaX < W < Y for someW e F. Then there
existse € X%\ YO such thaWy = 0, hencee’ € (Z°U 29\ YO. Sincez®\ Y? and
Z9\ YO are parallel classes ¢f /Y% andY? € WO, Lemma 0.7.5 implieg® < WO or
7% c WP, henceZ = WorZ = W. n

It is not difficult to see the following:

0.7.14 Lemma (Oriented Matroids of Rank 1 and 0) The face lattice of an oriented
matroid (E, #) of rank 1 has exactly the form of a diamond, where=)0, Z1 = —Z2,
and Y = 1. The face lattice of an oriented matroid of rank 0 only consist ef1.

0.8 Oriented Matroid Programming

Oriented matroid programming is the abstraction of linear programming in the setting
of oriented matroids. The original work of Bland [Bla77] discusses oriented matroid
programming in terms of dual pairs of oriented matroids, the primal presentation which
we give in the following is due to Fukuda [Fuk82]. Our introduction is very short, for
more details see Chapter 10 in [BLYS9] and the references cited in this section. We
will need oriented matroid programming in the proof of Theorem 1.3.1.

Remember that for a sign vectér C {—, +, 0}E we write X > 0if Xe € {+, 0} for all
e € E, and similarlyX < 0 if —X > 0. The same notation is also used for single signs
(e.9.,Xe > 0).

0.8.1 Definition (Oriented Matroid Program) Let M = (E, ¥) be an oriented matroid
and f, g € E two distinct elements. LeX, Z be sign vectors ok.

e X s calledfeasibleif X ¢ £ andX \ f > 0andXy = +.
e Zis calledadirectionif Z € ¥ andZy4 = 0.
e Z is calledan unbounded directioif Z is a direction,Z \ f > 0, andZs = +.

e For a feasibleX, we callZ an augmenting direction for X Z is a direction with
(Xo2Z)\ f>0andZs = +.

e X is calledoptimalif X is feasible and there is no augmenting directionXor

The oriented matroid progranODMP(M, g, ) is the problem to find an optimal sign
vector X.
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0.8.2 Definition Let M = (E, ¥) be an oriented matroidanidg € E, f # g. Consider
P = OMP(M, g, ). P is calledfeasibleif there exists a feasiblX for 4, unbounded
if & is feasible and there exists an unbounded directiosPfoandoptimalif there exists
an optimalX for 2. If 2 is not feasible ther is calledinfeasible

0.8.3 Lemma (OMP Induction) LetM = (E, ) be an oriented matroid and, § € E,
f # g. ConsiderP := OMP(M, g, f) and e e E \ {f, g}, and define the oriented
matroid programs? \ e := OMP(M \ e, g, f) and® /e := OMP(M /e, g, ). Then:

() If 2\ e optimal and? /e optimal then” optimal.
(i) If 2\ e optimal and? /e infeasible the optimal or infeasible.
(i) If 2 \ e unbounded and /e optimal then” unbounded or optimal.
(iv) If 2 \ e unbounded and /e infeasible thei® unbounded or infeasible.

Proof (i) Let X € # be such thaX \ eis an optimal solution of? \ e, and letX € ¥
be such thaiX \ e is an optimal solution of? /e, henceXe = 0. Assume thaiX
is not an optimal solution of”. If Xe > 0 thenX is feasible, so there exists an
augmenting directio € ¥ for X, but then isZ \ e an augmenting direction for
X\ &, in contradiction to the optimality ok \ efor /> \ e. HenceXe = —. Apply

covector elimination (F3) te-X, X, andg. There existZ € F such thatZg =0
andZp = ((—X) o X), for everyh € E\ D(—X, X), especiallyZyo > 0,Z40 <0,
andZe = +. The optimality ofX \ e implies thatZs < 0. Assume thak is not
an optimal solution of?. Then there exist€ € ¥ such thatZy = 0, Z¢ = +,
Zzo > 0,andZe = + (because oKe = 0 and the optimality oK for 2 /). Apply
covector elimination (F3) te-Z, Z, ande. There exist¥ € ¥ such thatZe = 0,
Zg=0,Z40 > 0,andZ¢ = +, in contradiction to the optimality ok \ e for /e,

(i) Let X € & be such thak \ eis an optimal solution of” \ e but not of %, hence
Xe = —asin (i). Assume thaP /eis infeasible, but nof, i.e., there existX € F
such thath +, X\ f > 0, andXe = +. Apply covector elimination (F3) tX,
X, ande. There existZ € ¥ suchthatZe =0,Z\ f > 0, Zg = +. This implies
that /eis feasible, a contradiction.

(i) Let Z € ¥ be suchthaZy = 0, Z¢ = +,andZ \ e > 0. Let X € ¥ be such
that X \ e is an optimal solution ofP /e, so Xg = +, X\ f > 0, andXe = O.
Assume that? is not unbounded and not optimal. Théa = —, and there exists
Z' € ¥ such thatZ} = +, Zg = 0, andZ{, > 0. Furthermore, the optimality
of #/eimplies Z; # 0, hencez; = +. Apply covector elimination (F3) t@, Z’,
ande. There existZ €  such thatZe = 0, Zg = 0, Z = +, andZyo > 0, a
contradiction to the optimality oX for £ /e.

(v) Let Z € ¥ be suchthaZyg = 0, Z¢ = +, andZ \ e > 0. Assume thatP is
not unbounded, hencé. = —. If P is feasible then there exis¥ € ¥ such that
Xg =+andX\ f > 0. As# /eis infeasible Xe = 4. Apply covector elimination
(F3) toZ, X, ande. There exist< such thatZe = 0, Zg = +,andZ \ f > 0, a
contradiction to the assumption th&/e is infeasible. |
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The following theorem is closely related to the duality theorem of oriented matroid pro-
gramming [Law75, Bla77]. The primal presentation as given here follows [Fuk82].

0.8.4 Theorem (Fundamental Theorem of OMP)Every oriented matroid program
P = (M, g, ) is exactly one of optimal, unbounded, or infeasible.

Proof The proof is by induction onE| and mainly based on the OMP induction (see
Lemma 0.8.3). FofE| = 2isE = {f, g}. Assume tha#” is feasible but not unbounded:
there existsX € # such thatXqg = +, and there is n& € ¥ such thatZg = 0 and
Z: = +. Therefore X is an optimal solution forP.

AssumelE| > 2. Choose ang € E \ {f, g}. By induction we assume that \ e and

P /e both are one of optimal, unbounded, or infeasible. Observe tlat\ie infeasible
then also? and /e. Furthermore, it? /e unbounded then als® and# \ e. Together
with the inductive result of Lemma 0.8.3 this implies in all cases #& one of optimal,
unbounded, or infeasible:

P/e
optimal | unbounded | infeasible
optimal optimal or
optimal Lemrﬁao 8.3 (i) (not possible) infeasible
e Lemma 0.8.3 (ii)
unbounded or unbounded or
& \ e unbounded optimal unbounded infeasible
Lemma 0.8.3 (iii) Lemma 0.8.3 (iv)
infeasible (not possible) | (not possible) infeasible

0.9 Basis Orientations and Chirotopes

This section introduces basis orientations and chirotopes. We will use chirotopes for a
compact encoding of oriented matroids in Chapter 6. Chirotopes can be characterized by
so-called Grassmann+RiKer relations (see Definition 3.5.3 in [BLVS9]) which gives

again another equivalent set of axioms of oriented matroids (we do not discuss this).

0.9.1 Definition (Ordered Sets)Let Sbe a finite set. We writé€S) for some fixed (linear)
order of the elements i8. If 7 is a permutation ots thenz (S) denotes the ordered set
obtained from(S) by reordering the elements accordingitoFor elemente € S, f ¢ S

we denote byS: e — f) the ordered set obtained fro(®) whene is replaced byf at

the same position, keeping the relative ordering of the other elements. Fof afdetite

sets defin€s) := {(S)| S € 4} to be the set of all ordered sets obtained by fixing an order
(in every possible way) for alb € §.
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A basis orientation is the sign of an abstract determinant of a basis: Consider a matrix
A of full column rank and a subs@ of the column index set which corresponds to a
basis of A. The determinant of the corresponding submatrixAaft non-zero, i.e., has
sign— or +. The determinant is defined for a specific ordering of the basis vectors, and a
permutationt of the columns irB will multiply the sign of the determinant with sign),

which is the sign of the permutation defined in the usual way (the sign of identity is

and by any transposition of two elements the sign is reversed). In this sense, the sign of
the determinant is an alternating function. For the following we use the arithmetic of signs
whichis defined byt - + = — - —=+and+ - —=— -+ = —.

0.9.2 LemmaletM = (E, ¥) be an oriented matroid ané its set of cocircuits. For
every basis Be 8 and every e B there exist exactly two cocircuits, X X € £ such
that B\ e € X% then X # 0.

Proof Use the definition of bases, and cocircuit axiom (C2). [ |

0.9.3 Definition (Fundamental Cocircuit) Let M = (E, ) be an oriented matroid and
D its set of cocircuits. For a basB € 8 ande € B we call the cocircuitX € D
determined byB \ e € X%andXe = + the fundamental cocircuit of¢ w.r.t. B and eand
denote it byX (B, e).

0.9.4 Definition (Basis Orientation of an Oriented Matroid) Let M = (E, ) be an
oriented matroid and its set of cocircuits. LetB be the set of bases of the underlying
matroid.M. Amapy : (8) — {—, +} is calleda basis orientation of\( if

(BO) y is alternating, i.e.x (B) = sign(w) - x (x(B)) for all (B) € (8) and all permu-
tationsz of B,

(B1) forall(B) e (B),ee B, f g BsuchthaB\ eU f € B,
x(B:e— f)=Xe- X5 - x(B), whereX = X(B, e) € D is the fundamental
cocircuit w.r.t.B ande (or, equivalently, its negative).

0.9.5 Theorem (Las Vergnas [LV75, LV78a])Every oriented matroid has exactly two
basis orientationg and —y.

Proof The proof follows essentially Lawrence [Law82], but does not use any duality
arguments; instead we use cocircuit elimination. The proof is by inductigiEpnThe
case|E| = r is trivial as there is only one basis. Assumtg > r. Let Be Bbea
basis of.M and sety (B) := +. We have to prove that this determinesn a unique and
consistent way. Choose amye E \ B and considerM \ a. Sincea ¢ B, a is not a
coloop of M, and by Corollary 0.4.9 (i) rar \ a) = rank(.M). Furthermore, the set
of bases ofM \ a is the set of those bas&of M for whicha ¢ B. By induction, there
exists a unique basis orientatign for M \ a with x'(B) = +. We sety(B) := x/(B)
for all ordered basegB) of E which do not contaira. Let (B) be an ordered basis
of .M that containg and X := X(B, a) the fundamental cocircuit w.r.B anda. Set
x(B):= Xa- Xe- x(B:a— e) for somee € X\ a (note thatX \ a # ¢ sincea is not

a coloop,B \ aU eis a basis, and the definition gf( B) is independent from the choice



50 AN INTRODUCTION TOORIENTED MATROIDS

of e sincey satisfies (B1) for all ordered bases®Bfwhich do not contaira). By this, x

is defined for all ordered bases Bf and y satisfies (BO) by induction and by the way of
the definition for the ordered sets which contain

It remains to prove (B1) foe, f € E,e # f. Ifa = eora = f then (B1) follows
from the definition ofy. Assume for the following # a and f # a. Consider a basis
B e 8suchthata € B,ec B, f ¢ B,andB\ eU f € 8. We have to show that
x(B:e— f)= Xe- X5 x(B), whereX = X(B, e).

In thefirst case f¢ span, (B \ a). ThenisB \ auU f a basis, and by definition

x(B) = X3 . x¥ . y(B:a— f)for X2 = X(B, a),
x(B:a—> f:e—>a = X§° X3 x(B:a— f)for X*®=X(B\eU f, a).

By cocircuit elimination (C3) applied tX2f, —X2€ anda there existsX®’ € D such
that XS = 0 andxﬁf € {Xfﬁl‘f, —X@e 0} forall h € E, henceB \ e € X®" and therefore
Xef = £X(B,e) and X&' = —X2¢ and X?f = X?f. In combination this leads to

xB:e— f)=—x(B:a— f:e— a) = Xx&". X?f - x(B), which proves the claim
in the first case.

In thesecond case & sparny, (B \ a). SetY := X(B, a) € D, thenY¢ = 0. Choose any
geY\athenB\auge B8andB\ {a, e} U{f, g} € 8. Similar to the first case, we
compose the replacement@® :e — f)=(B:a—>g:e— f : g — a)anduse
again cocircuit elimination (once anand once org) to prove the claim. We leave the
details to the reader. [ |

0.9.6 Definition (Chirotope) Let M = (E, ¥) be an oriented matroid. Set= |E| and

r := rank(.M). We call{y, —x} the chirotope ofM if x is a map defined on all ordered
subsetg'S) of E with cardinalityr such thaty, restricted to the set of ordered bases of
M, 1S a basis orientation of( andx (S) = 0 if Sis not a basis of\(.

0.9.7 Proposition Let M = (E, #) be an oriented matroid of rank r. The chirotope of
M (together with E and r) determine#.

Proof Let x be one of the two maps in the chirotope 0. The set of base® of
M is determined as the set ofsubsetsB of E for which x(B) # 0. A sign vector
X e {—,+,0}F is a cocircuit ofM if and only if there exists a basB € B and an
elemente € B suchthatB \ e) € X° X¢# 0, andX; = Xe- x(B)- x(B:e— f)for
all f ¢ B. |

For the rest of this section we consider the chirotope of the dual of an oriented matroid.
Let M = (E, ¥) be an oriented matroid anfl a basis ofM. By Proposition 0.5.11,

N := E\Bis abasis of the dualt*. Lete € Bandf € N, and consider the fundamental
cocircuit X = X(B, e) € ¥ and the so-calletbndamental circuit Y= Y(N, f) € F*

which is characterized b \ f < Y% andY; = + (consider Lemma 0.9.2 foi(*). By
definition, X = Y, furthermoreX NY C {e, f} andXe = Yt = +, henceXs = —VYe. Let

x andx * be basis orientations of( and.M*, respectively. Then,

which is the dual form of (B1). This leads to the following simple rule for the computation
of the chirotope of the dual from the primal:
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0.9.8 Lemma LetM = (E, ) be an oriented matroid ang one of the two maps in the
chirotope ofM. Consider a fixed order of E. Then, one of the two maps in the chirotope
of M* is determined by

x"(N) = sign(r (B, N)) - x(B),

where(B) = (b1, ...,b) and(N) = (br1, ..., b,) are ordered bases oi( and M*,
respectively, where N= E \ B, andx (B, N) is the permutation to sortby, ..., bp)
according to the fixed order of E.

Proof Note thaty*(N) # 0 if and only if N is a basis ofM*, which is the case if and
only if B = E\ N is a basis oM (see Proposition 0.5.11), hence if and only {iB) # 0
for any order ofB.

Let x* be such thaj*(N) = sign(z(B, N)) - x(B) for all ordered base&B) and (N)
of M and M*, respectively, wherd&l = E \ B. We have to show that*, restricted to
the set of ordered bases £f*, is a basis orientation of(*. Let (B) = (by, ..., by) and
(N) = (br 41, ..., bn) be ordered bases gt andM*, respectively, such thid = E \ B.
Considere € Band f € N. By assumption oy * and property (B1) o,

x*(N: f —>e) = —sign@(B,N))-x(B:e— f)
= —sign(m(B, N)) - Xe- Xt - x(B)
—Xe - X5 - x*(N),

whereX = X(B, e). This is a necessary condition gtf (see above), and it determines
x* up to negative, which implies the claim. [ |
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Chapter 1

Topes and Tope Graphs

1.1 Introduction and Problem Statements

Chapter 1 investigates topes and tope graphs of oriented matroids and their relation to
covectors and the big face lattice of oriented matroids. The two main problems consid-
ered in this chapter are tlalaracterization problenand thereconstruction problenof

tope graphs. Partially we review known results from [FH93] and [FST91]. The main ex-
tensions of these results are the separability of uncut topes (see Theorem 1.3.1) and the
reconstruction algorithms of faces and topes from cocircuits.

We first define some basic notions w.r.t. graphs, after this we introduce tope graphs, ad-
dress the problems discussed in this chapter, and give an overview of Chapter 1.

A graph G= (V(G), E(G)) is a pair of a finite set ofertices MG) and a set oedges

E(G) that are represented as unordered pairs of vertices, i.e., all edges are undirected. For
a connected grap® we will denote bydg (v, w) the (combinatorial) distance between

two verticesv, w € V(G) (i.e., the minimal number of edges in a path connectiragd

w) and by diangG) the diameter of5 (i.e., the maximal distanads (v, w) in G).

Two graphsG, G’ are calledsomorphicif there exists a bijection : V(G) — V(G')
such that{¢ (v), ¢ (w)} € E(G’) if and only if {v, w} € E(G). Then we calk a graph
isomorphism If G = G/, then we callp a graph automorphisipthe set of all automor-
phisms is denoted by AUB). If the vertices ofG are not labeled, then we usually identify
graphs that are isomorphic, e.g., we say thand G are equalif they are isomorphic.

The first class of graphs, which we discuss in this chapter, are the tope graphs of oriented
matroids. In a pseudosphere arrangement (see Section 0.1) topes correspond to regions of
maximal dimensiord, and two topes are adjacent if they have a comruba 1)-face.

The following definition of tope graphs also applies to sets of sign vectors which are not
tope sets of oriented matroids, which will be important for further investigations:

1.1.1 Definition (Tope Graph) Let (E, 7) be a pair of a finite seE and7” € {—, +, 0}
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such that all sign vectors i have the same suppofihe tope graph ofE, 7) is a graph
G with exactly |7 | vertices that can be associated by a bijectibn V(G) — 7 such
that{x, y} is an edge irE(G) if and only if the set of separating elemei@$.L (x), L(Y))

Is a parallel class of . If 7 is the tope set of an oriented matrald we also callG the

tope graph oM.

We will call a bijection.£ : V(G) — T like in Definition 1.1.1 arassociating bijection

An example of an oriented matroid (illustrated by a pseudosphere arrangement) and its
tope graph is given in Figure 1.1.

Figure 1.1: Adjacent regions in pseudosphere arrangement and tope graph

For oriented matroidsE, %) the above definition of a tope graph falls together with the
explanation given before: the parallel classes of the top€ set the same as the parallel
classes off, and for X, Y € 7 there exists ad — 1)-faceZ € ¥ such thatZ < X
andZ < Y ifand only if Z is of the formZ \ D := X\ D =Y\ D andZp = Ofor

D = D(X,Y) being a parallel class of . This can be proved by covector elimination
and observing Lemma 0.7.6 (for more a more general result which includes this case see
Lemma 1.5.6). Hence, the tope graph of an oriented mati®idF) with set of topes

T is a graphG with exactly fy = |77| vertices that can be associated by a bijection
L : V(G) — T tothe elements df” such that{x, y} is an edge irE(G) if and only if
L(X) andL(y) have a common lower neighbor in the face lattiéedenotes the number
of faces of dimensiomn). There is a one-to-one correspondencédf 1)-dimensional
faces and the edges @, hencefy_1 = |[E(G)]|.

We have introduced relabeling, reorientation, and isomorphism of oriented matroids in
Section 0.1. We define these notions in a more formal way again, by this also extending
them to arbitrary sets of sign vectors. Remember the definition of loops and parallel
elements in Definition 0.7.4.
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1.1.2 Definition (Relabeling, Reorientation, Isomorphism)Let ¥ be a set of sign vec-
tors on a finite ground sdf. A relabeling of # is a set of sign vectorg”’ on a finite
ground setE’ such that there is a bijectigh : £ — F’ and a bijection) between the
parallel classes of non-loop elementsfofand ' such thatXe = ¢ (X)e forall X € &

and alle € E, € € E’ wheree, € are not loops off and¥”’, respectively, and the parallel
classes ok and€’ are associated by. A reorientation of¥ is a set of sign vectors of
the form{s X | X € ¥} for someS C E, whereg X is the sign vector obtained from

X by reversing the signs of all elements$n We also call the map which transforr&#s

into a relabeling (or reorientation) a relabeling (or reorientation, respectively). A set of
sign vectors¥’ is calledisomorphic toF if £’ can be obtained fron¥ by relabeling
(first) and reorientation. Amsomorphism off” is a map which transform$ into a set
which is isomorphic tdf. Reorientation, relabeling, and isomorphism define equivalence
relations for sets of sign vectors. For a pair= (E, ) of a finite ground seE and a

set of sign vectors ok these relations define itelabeling clasd.C(.M), reorientation
classOC(M), andisomorphism clasEC(M).

Relabeling and hence isomorphism allows the introduction and deletion of parallel ele-
ments and loops. If all loops and redundant parallel elements are deleted, one obtains an
isomorphic set of sign vectors without loops such that all parallel classes contain only one
element:

1.1.3 Definition (Simple, Simplification) Let & be a set of sign vectors on a finite
ground sekE. ¥ is calledsimpleif there are no loops and no parallel elemenis f. An
oriented matroid E, ¥) is calledsimpleif # is simple.A simplification off" is a simple
set of sign vectors which is isomorphic ¥o.

By the definition of tope graphs, it follows:

1.1.4 Lemma The tope graph of a sét is equal to the tope graph of any simplification
of 7. More general, the tope graphs of any isomorphic sets of sign vectors are equal.

The above lemma states that the discussion of tope graphs may be restricted to simple sets
T ; this will not affect the generality of the results.

The present chapter mainly concerns the following two problems:
Characterization Problem: Given a graph G,
decide whether G is the tope graph of some oriented matroid.
Reconstruction Problem: Given a tope graph G of some oriented matroid,

find an oriented matroid/ such that G is the tope graph of.

Our investigations concern algorithmic solutions and their complexities. For our com-
plexity analyses we assume that every elementary operation (such as an addition or com-
parison of single elements) can be computed in constant time.
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Whereas the reconstruction problem can be solved in polynomial time by a simple algo-
rithm (see Section 1.4), the answer to the characterization problem is not that easy. In
terms of graphs, there is no polynomial characterization of tope graphs of oriented ma-
troids (unless rank is at most 3, see [FH93]), however, there exist algorithms which solve
the characterization problem by the way of construction of sign vectors (see Section 1.7).
We give in the following a more detailed overview of the results presented in this chapter.

In Section 1.2 we will discuss some basic properties of tope sets and tope graphs, intro-
ducing L1-systems and acycloids which are generalizations of the tope sets of oriented
matroids. Tope graphs af!-systems and acycloids are well studied and have good char-
acterizations (e.g., see [Djo73, FH93]).

We will prove a new separability property of tope graphs of oriented matroids in Sec-

tion 1.3. This separability property, which can be checked easily, is not valid for general
L1-systems or acycloids, however, it is also not sufficient to characterize tope graphs of
oriented matroids. Nevertheless, the separability property will be helpful again in Chap-
ter 4 for the developement of algorithms for the generation of oriented matroids.

In Section 1.4 we use properties from Section 1.2 to design a simple algorithm which
reconstructs tope sets of oriented matroids (or, more general, acycloids) from a given tope
graph. This orientation reconstruction is unique up to isomorphism, which also proves
that the tope graph of an oriented matroid characterizes its isomorphism class. This also
implies that the big face lattice of an oriented matroid characterizes its isomorphism class:
Tope graphs (or face lattices) of oriented matroids are representations of the isomorphism
classes of oriented matroids.

The known characterizations of tope sets of oriented matroids (e.g., see [BC87, Han90,
dS95]) do not lead to algorithms which check in polynomial time whether a given set
of sign vectors is the tope set of an oriented matroid. The same is true for tope graphs
of oriented matroids: there is no direct (graph theoretical) characterization which can be
checked in polynomial time (of course, the characterization problems of tope sets and tope
graphs are connected by the polynomial orientation reconstruction). However, as a result
of Fukuda, Saito, and Tamura [FST91], tope sets can be characterized in polynomial time
using algorithms which reconstruct faces from tope sets. We present such algorithms in
Section 1.5, present in Section 1.6 algorithms for the reconstruction of faces and topes
from cocircuits, and combine all these in Section 1.7 for an algorithm which characterizes
tope sets of oriented matroids in polynomial time.

1.2 Properties of Topes Graphs

We discuss in this section some basic properties of tope graphs of oriented matroids.
These are the properties of the tope graphs of so-cafteslystems and acycloids which
generalize tope sets of oriented matroids [Tom84, Han90, Han93].

1.2.1 Definition (L1-System, Acycloid [Tom84]) A pair (E, 7) of a finite setE and a
set7 C {—, +}F is calledan L!-systeralsoL-embeddable systérif
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(A1) forall X,Y € 7 such thatX # Y there exise € D(X,Y)andZ € 7 such that
Ze=—XeandZ\e= X\e. (reorientation)

If in addition to the reorientation property also
(A2) if X e T then—X € T, (symmetry)

then we call(E, 7) an acycloid(or simple acycloijl

A basic observation is the following [Han90]:

1.2.2 LemmaLet (E, ) be a simple oriented matroid arid its tope set. TheqE, 7)
is an acycloid.

Proof Since there are no loops, the set of topes satisfies {—, +}F. As (E, #) is
simple, (Al) is the same as the reorientation property of tope sets of oriented matroids (see
Corollary 0.7.7). The symmetry (A2) is obviously implied by the symmetry of covectors
(F1). [ |

The following is a very important characterization of edges in tope graph$-efstems
(and hence oriented matroids) [FH93]:

1.2.3Lemmalf (E, 7) is an Ll-system and G its tope graph with associating bijection
£:V(G) — T,then EHG) = {{x, y} | ID(L(X), L(¥)| = 1}.

Proof The claim follows directly from the definition of a tope graph and the fact tHat
systems are simple, i.e., all parallel classes contain exactly one element. [ |

The above lemma is used to prove the following important property of tope graphs of
L1-systems [FH93], which states that these graphs can be embedded isometrically in
some (higher-dimensional) hypercube, where isometrically means that distances in the
tope graph are the same as in the hypercube:

1.2.4 Proposition If (E, 7) is an L!-system and G its tope graph with associating bijec-
tionL : V(G) — T,then & (X, y) = |D(L(X), L(Yy))| forall x,y € V(G).

Proof Let (E, 7) be anL!-systemG its tope graph, and’ : V(G) — 7 an associating
bijection. We prove the claim by induction ¢B (L(X), L(Y))|. |D(L(X), L(Y))| =0
clearly impliesx = y. For|D(L(X), £(y))| = 1 the claim follows from Lemma 1.2.3.
Forx,y € V(G) setX := L(x) andY := L(y), and assum¢D (X, Y)| > 1. Since
X # Y, there exise € D(X,Y)andZ € 7 such thatZe = —XcandZ \e= X\ e.
There isz € V(G) such thatZ = L£(z). Obviously|D(X, Z)|] = 1 and|D(Z,Y)| =
ID(X,Y)|—1,sodg(x,z) = 1 and by inductiorg(z, y) = |[D(X, Y)| — 1. This implies
de(X,y) < dc(X,2) +dc(z,y) = |ID(X, Y)|. On the other hand Lemma 1.2.3 implies
de(x,y) > [D(X, Y)l. n
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1.2.5 Corollary ([FH93]) For every vertex in the tope graph G of an acycloid there
exists a unique vertexe V (G) such that & (v, v) = diam(G).

Proof Let £ : V(G) — 7 < {—, +}F be an associating bijection. By definition of an
acycloid—L(v) € 7. Letv € V(G) be determined by (v) = —L(v). By Propo-
sition 1.2.4,dg (v, v) = |E| is the maximal distance between any vertice&irand is
attained if and only if the vertices correspond to negative sign vectdrs in |

1.2.6 Definition (Antipode) Let G be the tope graph of an acycloid and V (G). We
call the vertex € V (G) determined byls (v, v) = diam(G) the antipode ob in G.

Lemma 1.2.3 says that for every edgey} in the tope grapl@ of an L1-system(E, 7),

where some associating bijectigh: V(G) — 7 is given, there is an elemeai E such
that.L(x) = L(y). We introduce the notion of agdge clas$or the collection of edges

which corresponds to the same element. It will turn out that edge classes are independent
from L.

1.2.7 Definition (Edge Clas€®; C(v, w)) Let (E, 7) be anL!-system and5 its tope
graph with associating bijectiasi : V(G) — 7. Fore € E we definethe edge class of
e by

E®:= {{v, w} € E(G) | D(£L(v), L(w)) = {e}}.

For an edgdv, w} € E(G) we define
Cv,w) :={xe V(G |dg(X, v) < dc(X, w)}.

It is obvious that edge classes partition the set of edges. For an illustration see Figure 1.1,
where edges of the same edge class are parallel. These edge classes are defined by the
graphG itself, independent fromx (this result is essentially based on work of Djokovi”
[Djo73)):

1.2.8 LemmaLet G be the tope graph of anltsystem(E, 7) and £ : V(G) — T
an associating bijection, furthermore lgt, w} € E(G) be an arbitrary edge in G, say
{v, w} € E®for some e E. Then

Cw, w) ={x e V(G) | L(X)e = L(v)e}

and
E®={{v,w'} € E(G)|v' € C(v, w) andw’ € C(w, v)}.

Proof SetV := L(v), W := £L(w), andX := L(x) for somex € V(G). By Propo-
sition 1.2.4,dg(x,v) = |D(X,V)| anddg(X, w) = |D(X, W)|, hencedg (X, v) <
de (X, w) if and only if [ID(X, V)| < |D(X, W)|, which is because ob(V, W) = {e}
equivalent toXe = Ve = —Wk. This proves thax € C(v, w) if and only if Xg = Ve.
SetV’' = L), W = L(w') for some{v',w'} € E(G). Asv € C(v,w) and
w' € C(w,v) is equivalent toVy, = Ve andW; = W, D(V, W) = {e} implies
eec D(V/, W), hencgv’, w'} € E€. Onthe other hand, & e D(V’, W), then (after pos-
sibly interchanging/’ andW’, which does not change the edge sificew’} = {w’, v'})
Vg = Ve andW; = We, hencev’ € C(v, w) andw’ € C(w, v). [
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We illustrate the results of this section for the case of oriented matroids of rank 2 (di-
mension 1). This case will be important for several later considerations in this thesis, for
example for the characterization of oriented matroids of rank 2 in Corollary 1.4.4.

1.2.9 Proposition (Tope Graph of Oriented Matroid of Rank 2) The tope graph of an
oriented matroid E, #) of rank 2 is a cycle of even lengn’, where riis the number of
parallel classes it /E?, where E is the set of loops.

Figure 1.2 shows an example of an oriented matroid of rank 2 and its tope graph, where
the gray lines indicate a corresponding central arrangement of lines (i.e., the intersection
of these lines with the unit sphe® induces a 1-dimensional sphere arrangement which
realizes the oriented matroid).

Figure 1.2: Tope graph of an oriented matroid of rank 2

Proof of Proposition 1.2.9 Let M be an oriented matroid of rank 2, and associate the
topes to the vertices of the tope graplof M by an associating bijectias : V(G) — T

as in Definition 1.1.1. rankM) = 2 obviously implie0 ¢ 7, and by the symmetry of
covectors (F1) @ = |7 | for some integen’ > 0. The edges o6 correspond to the
cocircuits of the oriented matroid. The diamond property 0.7.13 implies that the degree of
every vertex is 2. This implies th& consists of a set of cycles, and by Proposition 1.2.4

G is connected, i.eG has the form of a cycle of lengtm2 where them’ = diam(G) =

|E’| for E’ being the ground set of any simplification.sf. By definition,|E’| equals the
number of parallel classes of non-loop elements. ]

In tope graphs of oriented matroids of rank 2 every edge class contains two edges which
are have opposite positions in the cycle.

1.3 Separability of Uncut Topes

In this section we strengthen the results of Section 1.2 and prove a new property of tope
graphs of oriented matroids which can be checked easily from the graph and which will
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be helpful later for the design of generation algorithms. Examples will show that not all
tope graphs of acycloids satisfy the stronger property, but also that it does not characterize
tope graphs of oriented matroids.

We will state our results first in terms of sign vectors and then in terms of tope graphs.
LetM = (E, ¥) be a simple oriented matroid with tope §etand define for an arbitrary
elementf € E

T~ = {ZeT|Zt=—-and+Z ¢ T},
7 = {ZeT|Zi=+and+Z ¢ T},
70 = (ZeT|+Z2e7T),

where+Z is the sign vector obtained froi by reversing the sign of elemeft We will
say that the topes iim — and7 + arenot cut by for simplyuncut The motivation for this
name comes from considering sphere arrangements and the deletionshinér If the
sphereS; is inserted in the arrangement accordingito, f, then some of the regions of
the minor remain unchanged, some an¢by S; into two new regions. The topes i~
and 7+ correspond to regions which remain uncut (either on-ther on the+ side of
St), the topes i ¥ correspond to regions obtained by a cut.

We will show that the vertices ift ~ (and, by symmetry, similarly the verticesdn™) are
connected in the sense of adjacency in tope graphs:

1.3.1 TheoremLetM = (E, ¥) be a simple oriented matroid with tope $€t Choose
an arbitrary element fe E. For any two topes XY € T~ there exists a sequence
X =20 ..,Z=Y suchthat Ze 7~ fori € {0,...,k} and|D(Z'~1, Z')| = 1 for
ie{l, ..., Kk}

Before we prove this connectedness property we give some remarks. First, we show in
Figure 1.3 an example for the analog@inecase where the connectedness in the sense

of Theorem 1.3.1 is not valid (in the example the gray regions are tihdaees not cut

by the new hyperplané, and obviouslyX andY are not connected on the side of ).

In order to see the connectedness in the sense of Theorem 1.3.1, the line arrangement has
to be embedded on the front side of a sphere with a corresponding extension to the back
side; the uncut regions then become connected through the back part of the sphere (see
also case (i) in Figure 1.6).

An immediate consequence of Theorem 1.3.1 is the separability of uncut topes (note that
because of Lemma 1.2.8 the edge class&3 afe defined bys itself, without associating
bijection£):

1.3.2 Corollary Let G be the tope graph of an oriented matroid antl € E(G) an edge
class. Denote by ¥the set of vertices incident to some edge i fhen the subgraph of
G induced by the vertices (%) \ V° has either no or exactly two connected components.

Proof There exists a simple oriented matrof such thaiG is the tope graph oM with
associating bijectioet : V(G) — 7 < {—, +}E. By the definition of edge classes there
existsf € E such thatf mapsV0 t07%=(Z ¢ T1+ZeT) fT\T7°#@then
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Figure 1.3: Example for non-connectedness in the affine case

Theorem 1.3.1implies that there are exactly two connected components in the subgraph of
G induced by the vertice¥ (G) \ V9, one corresponding t0 ~, the other corresponding
to T+, n

The result of Corollary 1.3.2 implies that if there exist uncut topes then they are separated
by the topes which are cut in-apart and at part as they belong t6 — and7 *; the only
ambiguity is the orientation of the corresponding elememthich definesE .

1.3.3 Definition (Separable Tope Graph)Let G be the tope graph of aln’-system and
Ef an edge class i6. We say thaG is separable w.r.t. £ (or, if an associating bijection
is given such thaf < E defines the edge clags’, G is separable w.r.t. ¥if the separa-
bility holds for this edge clask ': the subgraph o6 induced by the vertice¥ (G) \ V°
has either no or exactly two connected components, wii€rdenotes the set of vertices
incident to some edge iB f. We callG separabléf G is separable w.r.t. all edge classes.

We present two examples which show that not all tope graphs of acycloids are separable
(see Figure 1.4), but also that not all separable tope graphs of acycloids are tope graphs of
oriented matroids (see Figure 1.5). Both examples have a groumt=setl, 2, 3, 4, 5}.

The tope graph in Figure 1.4 is separable only w.r.t. element 1 but not separable w.r.t. 2,
3, 4, or 5, which can be seen by inspection. The acycloid in Figure 1.5 is not an oriented
matroid, but its tope graph is separable. Again, separability is not difficult to see, but the
proof that the acycloid is not an oriented matroid is not obvious. Actually the example
has been found by computer support. A formal proof can be found by use of the method
for the construction of faces from a tope set (see Section 1.5).

We give a sketch of the proof of Theorem 1.3.1. Consider two regioasdY which are

not cut by the element and are on the same side bf say the— side. There exists an
elementg € E \ f that boundsX and does not separa¥andY; if we considerg as an
infinity elementwe may callX an unbounded region. There are two cases to consider:
() Y is also an unbounded region and {¥i)is not an unbounded region. The two cases
are illustrated in Figure 1.6 showing the side of f only; note that case (i), restricted
to affine space (i.e., to the side ofg), is exactly the example of Figure 1.3. In case
(i) we consider the contraction w.rg.and use a non-trivial inductive argument to prove
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—+++-

+-——+

Figure 1.4: Acycloid whose tope graph is not separable

that X andY are connected in the sense of Theorem 1.3.1. In case (ii) we shoW that
connected in the sense of Theorem 1.3.1 to an unbounded régiahich is known to be
connected toX because of case (i). The unbounded regiois found using an oriented
matroid program (see Definition 0.8.1) which has an optimal solutioriThe solution

U defines an unbounded cone (hatched with white lines in Figure 1.6) which contains
regions that are all connected in the sense of Theorem 1.3.1.

Proof of Theorem 1.3.1 The proof is by induction on the rank oft. For some small
rankr, sayr < 2, the proof is obviously true (for the case of rank= 2 see also
Proposition 1.2.9). Conside® with rank(:M) > 3. If 7~ = @ then the claim is trivially
true, so assum&~ # ¢. Let X,Y € T—. ThenX; = Y; = — implies X # -Y,
and by the reorientation property (A1) (cf. Lemma 1.2.2) applieX tand —Y there is
ge D(X,=Y)=E\D(X,Y)suchthaty X € 7. X € 7~ impliesg # f. Obviously
Xg = Yg # 0, and without loss of generality assuig = Yy = +.

(i) If gY € 7: Consider the contraction minau /g (i.e., the contraction o/ to faces
which containg in the zero support) which is a (not necessarily simple) oriented
matroid whose rank is raii() — 1 (see Corollary 0.4.9 (ii)). Denote byl a
simplification of M /g where the parallel class containirfgis represented by .
Note thatX \ g € M/gandY \ g € M/g, and denote byX andY their images in
M, thenX,Y € T, where7 ~ is defined forM as7 ~ for .M. By induction, there
exists a sequencé = U°, ... UK = Y in 7~ such thaiDU'~1, U")| = 1 for
i €{1,...,k}. Consider e {O, ,k}: U' € 7~ implies that there exidtl' € 7
such that)} = + andgU' € whereU' is the image ob)' \ g in M furthermore
Ut = — and at most one ofU' and{fg U'isinT,ie. atleast one dd' and

gUisin 7-. We definel’ := U' if U" € 7, otherwiseU' := U € 7.
SlnceUO = X andUX =Y, it remains to show thdt)’~1 andU' are connected
within 7~ foralli € {1, ..., k} in the sense of the claim.
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Figure 1.5: Acycloid which is not an oriented matroid but whose tope graph is separable
g
— |+
X
f
— |+
Y
Case (i) Case (ii)

Figure 1.6: The two cases in the proof of Theorem 1.3.1

Considen € {1, e K}. By Proposition 1.2.4, there e_xist two seq_uentiéfsl =
VO ...,ve = UlandgU't = WO, ... Wi = gU! with ID(VI~L V]| =
ID(W!I=L, Wl =1forallj € {1,...,d}, whered = |[DU'~1, U")|. If at least

one of the two sequences foe {1, ..., k} lies entirely in7 —, the claim follows by
combining all these sequencesiiim. Assume that for somiee {1, ..., k} neither
of the two sequences is entirely in—, i.e., there exiss, t € {0, ..., d} such that

V' :=+VS e 7 andW := +W!' € 7. Covector elimination (F3) applied 1/,
W', andg implies that there exist& € # such thatZq = 0 andZe = (V' o W')e
fore g D(V',W), i.e.,Ze = V{ = W/ fore ¢ D(V', W), especiallyZ; = +.
Note thatD := D(U'~%, U') is a parallel class oM /g, s0Zp = 0, Zp = U5%, or
Zp = U}, and withD(V/, W) € D U {g} it follows thatZ o U'~1 = U1 e T
orZoU' =+U' e 7, a contradiction.
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(i) If gY & T: We show thaty is connected withirf™~ in the sense of the claim
to someY’ € 7~ for which4Y’ € 7; then the claim follows from (i). Without
loss of generality assumé = + for alle € E \ {f} (reorientation does not af-
fect connectedness withini—). Consider the oriented matroid program, g, f),
see Definition 0.8.1. Sinc¥ is feasible for(.M, g, f), and since no unbounded
augmenting directiorz e ¥ exists (otherwiseZ oY = +Y e 7, a contra-
diction), Theorem 0.8.4 implies that there exists an optimal solutios ¥ for
(M, g, f); note thatU \ f > 0,Ug = +, andU¢ < O (sinceUs = + implies

UoY =Y € T). SetV := -UoY e 7. By Proposition 1.2.4, there ex-
ists a sequenc¥ = WO, ..., W9 = V e 7 such that D(W 1, W)| = 1 for

i e {1,...,d}, whered = [D(Y, V)|. SinceYy = + andVyg = —Ug = —, there
existsk € {1, ...,d} such that\Né = +fori <k andwg = —. SetY’ := Wk,
theng Y’ = WK € 7, and it remains to show th&¥' € 7~ fori e {1,...,k — 1}.
AssumeWw! g 7~ forsomei € {1,...,k — 1}, i.e., there exist¥V' € T such that

W'\ f =W\ f andW;} = +. Apply covector elimination (F3) t&/’, —U, andg:
There exist&Z’ € £ such thathq =0andZ; = (W o —-U)cforeg D(W', —U),
especiallyZ; = +, and, for alle # f with Ue = 0, Ve = Ye = +, so alsoW; = +
andZ, =W, = +, i.e.,Z’ is an augmenting direction fd#, in contradiction to the
optimality of U. [ |

1.4 Orientation Reconstruction

We discuss now how one can find from a tope graph the underlying acycloid up to iso-
morphism. The results of Section 1.2 lead to an algorithtiy @ OIDORIENTATIONRE-
CONSTRUCTION(see Pseudo-Code 1.1) which efficiently reconstructs the sign vectors of
an acycloid from a tope graph (almost the same algorithm is also given in [CF93] in the
proof of Theorem 4.1).

1.4.1 Proposition ([CF93]) The algorithm AcCYCLOIDORIENTATIONRECONSTRUG

TION constructs an acycloid™ = {£(v) | v € V(G)} C {—, +}F such that G is the
tope graph of7” with associating bijectiont in time O(n - |V(G)| - |[E(G)|), where
n = diam(G) = |E|. 7 is unique up to labeling and orientation of the elements in E.

For an oriented matroid, the complexity oEACLOIDORIENTATIONRECONSTRUCTION
isO(n- fq- fg_1),asfqg = |V(G)|and fg_1 = |E(G)|.

Proof of Proposition 1.4.1 Considerx € V(G) and its antipod&, which is determined
by dg(v,v) = diam(G) =: n (see Corollary 1.2.5). By Proposition 1.2X4,andX
correspond to negative sign vectors in the acycloid, $8y) = X = (+...+) and

LX) = =X = (—...—) for X € {—,+}F with E = {1,...,n} (we are free to
label the elements arbitrarily, also to choose some initial orientatiorXjorLet x =
X%, x1, ..., x" = X be a shortest path connectirgandX. Because of Proposition 1.2.4,

ID(L(x®), L(X))| = efor e € E, and as we still are free to permuiearbitrarily, we
can setL(x®)f = + if f > eandL(x®)f = — otherwise. By this all.t(x®) are
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Input: A graphG which is tope graph of some acycloid.
Output: For everyv e V(G) a sign vector£L(v) € {—,+}F, where
E={1,...,n}withn=diamG).

begin ACYCLOIDORIENTATIONRECONSTRUCTIONG);
choose any € V(G) and determin& € V (G);

choose any shortest path= X0 xt . ... x"=Xx connectingk andx;
for everye e {1, ..., n} and everyw € V(G) do
if dg(v, X¢ 1) < dg (v, x®) then
L(W)e =+
else
L(V)e = —
endif
endfor;

return L(v) forallv
end ACYCLOIDORIENTATIONRECONSTRUCTION

Pseudo-Code 1.1: Algorithm@yCcLOIDORIENTATIONRECONSTRUCTION

defined, and we will see that this determines also all remaidiqg for v € V(G).
Letv € V(G). Then for a correct associating bijectigh v € C(x®~1, x®) if and only if
L(v)e = L(X*1)e = + (see Lemma 1.2.8). For the complexity note that the computation
of distances or shortest paths between given vertices costs not moi@ tHa()|). m=

It was first proved by Bjrner, Edelman, and Ziegler [BEZ90] that the tope graph deter-
mines an oriented matroid up to isomorphism. This results now follows from the recon-
struction algorithm:

1.4.2 Corollary The tope graph of an acycloid determines the acycloid up to isomor-
phism. As simple oriented matroids are acycloids, the same result is true for tope graphs
of oriented matroids.

1.4.3 Corollary The big face lattice of an oriented matroil determines its isomor-
phism clas3C(M).

Proof Note that the tope graph oft is determined by the big face lattice. ]

1.4.4 Corollary (Oriented Matroids of Rank 2) Let M = (E, #) be an oriented ma-
troid of rank 2, and let hbe the number of parallel classes #i/E°, where E is

the set of loops of«. ThenM is isomorphic to(E’, £') with E' = {1,...,n’} and

F'={0}U D' UT’, where the set of cocircuit®’ contains the2n’ sign vectors Xand

— X', where X = signi — j) fori, j e {1,...,n'}, and the set of topes’ contains
the 2n’ sign vectors Y and —Y', where ¥ = —ifi < jand Y] = + otherwise for
i,jef{l...,n}.
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Proof By Proposition 1.2.9 is the tope graghof (E, #) a cycle of length &, and so
is also the tope graph afE, #’). Hence, by Corollary 1.4.2E, ¥) and (E, ¥') are
isomorphic. It is not difficult to see thaE’, ') is an oriented matroid. An illustration is
found in Figure 1.2. [ |

1.5 Face Reconstruction from Topes

This section first contains some of the results on the number of faces from Section 2 of
Fukuda, Saito, Tamura [FST91], with some minor extensions. We will use the notion of
faces in place of covectors as we consider their mutual facial relation and their position
w.r.t. the face lattice of the oriented matroid. Furthermore, we show an algorithm from
[FST91] which constructs the set of all oriented matroid fagesom the set of tope§”

in time O(n3 fdz), wheren is the cardinality of the ground s&tand fy = |7°|. Remember

that for a given oriented matroidE, ) andi € {—1, ..., d}, # denotes set of faces of
dimension in & (which we calli-faces) andf; = | |.

The main result used in the following is

1.5.1 Theorem ([FST91])Let M be an oriented matroid of dimension:e dim(M).
Then f < (%) fa foralli € {0, ..., d}.

Proof See Theorem 1.1in [FST91]. [ |

1.5.2 Corollary ([FST91]) For any oriented matroid of dimension d holdspf< fg.

Finally we need a lower bound on the number of topes in an oriented matroid:

1.5.3 Lemma For any oriented matroid« of dimension d holdgd+1 < fy.

The above lower bound is better than the one given in [FST91], whi(ﬁb is fq for any
i €{0,...,d}.

Proof of Lemma 1.5.3 Let M = (E, ¥) be an oriented matroid of dimensidni.e., of
rankr = d + 1. Ifr = Othen 2*+1 = 1 = f4; assume for the following > 1. Let

B be a basis ok, so|B| = r. As B is an independent set, it does not contain loops.
Consider the deletion mina#(’ := M \ (E \ B), an oriented matroid with ground set
B. By Corollary 0.4.6 (i), rankM’) = ranky(B) = r. If X is a cocircuit inM" then
rank,.(X) = 1 (see Corollary 0.7.11), and by definition rg_nkxo) =r — 1, but then
IX%| = r — 1. As for every elemerg € E which is not a loop there exists a cocircuit
X such thake € X (cf. Lemma 0.6.2), the set of cocircuits #t’ is the set of the 2sign
vectorsX € {—, +, 0}B such that X°| = r — 1. Let7’ denote the tope set of’, then
Corollary 0.6.4 implies thaf’ = {—, +}B. It is obvious that for everZ’ € 7' there
existsZ € 7 such thatz’ = Zg, thereford 7’| = 2" = 29+1 < |7| = fq. n

1.5.4 Corollary ([FST91]) For any oriented matroidi holds|#| < |7|?, whereT is
the set of topes o#t(.
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Proof Setd := dim(M) and apply Theorem 1.5.1 and Lemma 1.5.3 (note that by defini-
tion T # 0):

d d
d
[Fl=1+) fi<l+) (i)fd =1+ 207 < 2T < T
i=0 i=0 -

1.5.5 Lemma Let (E, ) be an oriented matroid and X ¥ . Then the parallel classes
of #/X%and F (X) := {Z € ¥ | Z = X} are the same.

Proof # /X% is a set of covectors whose set of tope&ieX). |

The key lemma is the following characterizations of lower faces, which is also used in
[FST91]. We add a proof which is basically a consequence of Lemma 0.7.6.

1.5.6 LemmaLet (E, ) be an oriented matroid of dimension:e dim(.M). For any
i €{0,...,d—1}, Z € % if and only if there exist XY € %1 such that X=Y and
D := D(X,Y)isaparallelclass ofF (X) :={Z € ¥ | Z = X}and Z\ D = X\ D and
Zp =0.

Proof Let (E, ¥) be an oriented matroid, := dim(-M), andi € {0, ...,d — 1}. Let for
XeFbeFX):={ZeF|Z=X}

Assume that there exist,Y € F 1 suchthatX = Y andD := D(X,Y) # @ is a
parallel class ofF (X). Apply conformal elimination toX, Y, andD: There existe € D
andZ € ¥ suchthaZe = 0,Zp < Xp,andZ\D = (XoY)\D = X\ D. ThenZ < X
and0 = Zp sinceD is a parallel class of / X° (because of Lemma 1.5.%, ¢ #/X°,
and Lemma 0.7.5). AD = Z°\ X° Lemma 0.7.6 implieZ € % .

LetZ € . Asi < dthere existX € ;1 such thatz < X. SetY := Z o (—X), then
X =YandY € F.1,and forD := D(X,Y) follows Z\ D = X\ D andZp = 0. By
Lemma 0.7.6D is a parallel class aof / X°, hence by Lemma 1.5.5 also a parallel class
of ¥ (X). [ ]

The above lemma immediately leads to an algorith@mwWERFACES (see Pseudo-
Code 1.2) which returns for everye {0,...,d — 1} and inputw := ¥;,1 the set of
lower faces¥;. This algorithm is the key subroutine for the face enumeration algorithm
FACEENUMERATION (see Pseudo-Code 1.3) which returns for input= %y the list
(F_1, ..., Fq) ordered by dimension. Our presentation follows essentially [FST91], with
one difference which makes the complexity analysis easier. we change théoirmop

of the algorithm such that evedy € W; and every parallel clas® of W; is considered,
where in the original algorithm pairs, Y € ‘W; are considered which are then tested for
D (X, Y) being a parallel class d#;. The computation of parallel classes of a set of sign
vectors of same support is easy when omitting loops and reorienting suchtthat +)

is one of the sign vectors being considered.

1.5.7 Theorem ([FST91])Let (E, ) be an oriented matroid with tope sgt. The al-
gorithm FACEENUMERATION started with inputWg := 7 returns(¥_1, ..., #q), i.e.,

the algorithm enumerates all faces #1 ordered by dimension. There exist implementa-
tions such that the algorithm has a complexity (measured by the number of elementary
operations) of at most > fdz), where n is the cardinality of the ground set E.
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Input: A set of sign vectorsy C {—, +, 0}E.
Output: A set of sign vectorsV’ C {—, +, 0}E.

begin LOWERFACES(W);
partition W into classesW; of sign vectors having the same support;
W = ;
for every'w;j do
compute the collection of parallel classesf;
for everyX e 'W; and every parallel cladd of ‘W; do
if Xp # 0andg X € W;j then
W :=WU{Z|Z\D=X\DandZp =0}
endif
endfor
endfor;
return ‘W’
end LOWERFACES.

Pseudo-Code 1.2: AlgorithmdwERFACES

Input: A set of sign vector§¥p C {—, +, O}F.
Output: An ordered listW_j, ..., Wo) of sets of sign vector®; C {—, +, 0}F

for somej.

begin FACEENUMERATION(Wp);
i :=0;
while W_; # {0} andW_; # ¥ do
W_i_1 := LOWERFACES(W_;);
i=i+1
endwhile;
return (W_, ..., Wo)
end FACEENUMERATION.

Pseudo-Code 1.3: AlgorithmAEEENUMERATION
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Proof We do not give a detailed analysis (for this see [FST91]). The algoritiomv-L
ERFACES has a complexity of at mod(n® f; 1) to enumerateF; from %1 if the sign
vectors are sorted appropriately. This leads to an overall complexitysfoe ENUMER-

ATION of O(n®|#|) which is at mos{n3 fdz) because of Corollary 1.5.4 (note that if the
algorithm is extended such that it stops with failure message if the number of sign vectors
collected exceedsﬁd2 then the polynomial complexity is also valid for inpiit which is

not the tope set of an oriented matroid). ]

1.6 Construction of Covectors and Topes from Cocircuits

In the previous section we have described a polynomial algorithm for the construction
of covectors (and hence also cocircuits) from topes. In this section we discuss how to
construct sets of covectots or topesy from a given set of cocircuit® in polyno-

mial time, measured in input and output [&| and |7 | are usually not polynomial in

|D|. By this we use an extended notion of polynomiality which has been introduced by
Fukuda [Fuk96, Fuk00a, Fuk01]. Our construction methods of this section complete the
presentation in [FST91] where such algorithms have not been presented but have been
implicitly assumed to exist. We suppose that such algorithms may have been developed
by the authors of [FST91] without stating it.

We present two algorithms,d&VECTORFROMCOCIRCUITS (see Pseudo-Code 1.4) and
ToPEFROMCOCIRCUITS (see Pseudo-Code 1.5) which are similar, both are based on
the fact that every covector has a representation by conformal decompositon (see Propo-
sition 0.6.3). We use in the algorithms the data structureatdnced binary treegalso
calledAVL-treegAVL62, Knu73]) which allow to store data such that the operations of
insertion, finding, and deletion all cost a number of operations which is logarithmic in the
number of entries currently stored in the tree.

1.6.1 Proposition The algorithmCovECTORFROMCOCIRCUITS constructs the set of
covectors¥ from the set of cocircuit® in time O(n? fo|  |), where § = |D| and n is
the cardinality of the ground set E of the oriented matroid.

Proof The correctness of algorithmad¥eECTORFROMCOCIRCUITS is quite obvious.
Note that all covectors are added to the $géw exactly once. The compexity analysis
uses the trivial fact thgt¥'| < 3", so log; |#| < n. Thewhile-loop is executed for every
Y in & once, where every execution costs at m0sh? fo) as we use a balanced binary
tree (i.e., the find and insert operations are @th log | |), soO(n?)). This leads to an
overall complexity ofO(n? fo| ). n

For the algorithm ®PEFFROMCoOCIRCUITSWe modify COVECTORFROMCOCIRCUITS
such that only topes are returned. This is easy skee ¥ is a tope if and only ifX° is
the set of loops (see Lemma 0.7.2).

1.6.2 Proposition The algorithmToPEFROMCOCIRCUITS constructs the set of topes
7 from the set of cocircuit® in time O(n?fof2), where § = |D|, fy = |7, and
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Input: The ground se€ and the setdD < {—, +, 0}F of cocircuits of some
oriented matroid.

Output: The set¥ C {—, +, 0}E of covectors of the oriented matroid defined
by D.

begin COVECTORFROMCOCIRCUITYE, D);
F :={0}; (¥ is a balanced binary tree)
Fnew := {0};
while ?hew?é ¢ do
take anyY from Fnewand remove it fronFnew;
for all X € O do

Z:=XoY,;
if Z ¢ ¥ theninsertZ in £ and addZ to Fnewendif
endfor
endwhile;
return &

end COVECTORFROMCOCIRCUITS

Pseudo-Code 1.4: Algorithm@&ECTORFROMCOCIRCUITS

n is the cardinality of the ground set E of the oriented matroid. Because 6f ffy
(Corollary 1.5.2) the complexity is not higher thant3 fd?’).

Proof The proof is similar to the one concerning algorithroMECTORFROMCOCIR-
culTs. The complexity is agai®(n? fo| # |), which is because of Corollary 1.5.4 at most
O(n?fof2). n

1.7 Algorithmic Characterization of Tope Sets

We consider in this section the characterization problem of tope sets and tope graphs of
oriented matroids. We present polynomial algorithms which solve these characterization
problems.

1.7.1 Proposition ([FST91]) There exists an algorithm which decides whether a given
set7 C {—, +, O}F is the set of topes of an oriented matroid or not. The complexity is
bounded by @3 {2 +n?f3), where n=|E| and § = |T|.

Proof Consider a sef” C {—, +, 0}F of sign vectors. Seh := |E|. With the face
enumeration algorithmA€EENUMERATION from Section 1.5 we can construct in time
o(nd fdz) alist(w_j, ..., Wp) such thatw_j_, is the set of cocircuits corresponding to

T if T is the set of topes of an oriented matroid (cf. Theorem 1.5.7). If the algorithm
exceeds the limit off  sign vectors thef™ is not the tope set of an oriented matroid: the
algorithms stops and reports this. S@t:= W_j 1, if |[D] > fgq then we stopT is not
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Input: The ground se€ and the setd < {—, +, 0}F of cocircuits of some
oriented matroid.
Output: The seti” C {—, +, 0}E of topes of the oriented matroid defined By

begin TOPEFROMCOCIRCUITYE, D);
if & = @ then return {0} = {0}F

else
F :={0}; (¥ is a balanced binary tree)
Frew := {0};
T =10
E0:= N X%

XedD
while ?’new# ¢ do

take anyY from Fnewand remove it fronFnew;
for all X € O do
Z:=XoY,;
if Z¢ ¥ then
insertZ in ;
if Z0 = E%thenaddZ to 7 elseaddZ to Fnew endif
endif
endfor
endwhile;
return 5
endif
end TOPEFFROMCOCIRCUITS

Pseudo-Code 1.5: AlgorithmdPEFROMCOCIRCUITS

tope set of an oriented matroid, see Corollary 1.5.2). Otherwise teg fine cocircuit
axioms in timeO(n?|D ), which is at mosO(n? f3). If the cocircuit axioms are valid
for D, it remains to test whethér is the tope set generated frafh under composition,
which can be done in tim®(n? fd3) using the algorithm ®PEFFROMCOCIRCUITS (See
Pseudo-Code 1.5 and Proposition 1.6.2). [ |

By combination of the result from Proposition 1.7.1 and the algorithm for the orientation
reconstruction from Section 1.4, there exists a polynomial algorithm which characterizes
tope graphs of oriented matroids. In practice, before this polynomial algorithm is used,
the known properties of tope graphs (especially also the new separability property of
Corollary 1.3.2) are checked, which reduces the amount of computation considerably.

1.7.2 Corollary ([FST91]) Tope graphs of oriented matroids can be characterized in
polynomial time: there exists an algorithm which decides for any (connected) graph G in
time bounded by @32 + n?f3) whether G is the tope graph of an oriented matroid or
not, where here = diam(G) and {j = |V (G)]|.
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Proof Consider a grapfs, setn := diam(G) and fy := |V (G)| (if G is not connected it

is not the tope graph of an oriented matroid). Using algorithtty @LOIDORIENTATION-
RECONSTRUCTION(see Pseudo-Code 1.1) a §ebf sign vectors can be constructed in
time of at mostO(n - |V (G)|3) such that7 is a set of topes if5 is the tope graph of
an oriented matroid (cf. Proposition 1.4.1 and note {f&iG)| < |V (G)|%; if Acy-
CLOIDORIENTATIONRECONSTRUCTION fails, e.g., if no antipodal vertex is founé

was not tope graph of an oriented matroid). By Proposition 177.dan be tested in time
O(n*f2+n2f3) for being a set of topes of an oriented matroid, and finally it is obviously
possible without increase of the order of complexity to test wheBher the tope graph

of 7. [ ]
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Chapter 2

Cocircuits and Cocircuit Graphs

2.1 Introduction and Problem Statements

We discuss in this chapter reconstruction and characterization problems concerning the
cocircuit graph of an oriented matroid. The starting point of our work has been an article
of Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO00] which we obtained as a preprint
in 1998, and our goal was to extend their work, mainly by adding algorithmic solutions
with complexity analyses to their results. We describe our results in this chapter (see also
[BFFO1)).

In this section we introduce basic definitions such as cocircuit graphs and graph labels and
formulate the problems considered in this chapter. We relate our work to the mentioned
work of [CFGdOO0O0] and other related work.

We have introduced graphs in Section 1.1 as pa@irs- (V(G), E(G)) of a vertex set

V(G) and an edge s (G), where every edge is represented as an unordered pair of
vertices. Again, where appropriate we will identify any two graphs that are isomorphic.
The cocircuit graph of an oriented matrodd = (E, D) is the 1-skeleton oft(, which

is a graph because of the diamond property of oriented matroids (Theorem 0.7.13): For
every covectoiX € F with ranky (X) = 2, there exist exactly two cocircuits, W € D
suchthaD <V < Xand0 < W < X. V andW correspond to verticas w € V(G) and

X =V o W to the edgdv, w} € E(G). The number of vertices @& equals the number

of cocircuits of M, and the number of edges &f equals the number of 1-dimensional
faces ofM: |V (G)| = |D| = foand|E(G)| = f1. More formally, we define:

2.1.1 Definition (Cocircuit Graph) Let M = (E, ) be an oriented matroid and the
set of cocircuits ofM. Thecocircuit graph ofM is a graphs with fo = |D| vertices such
that there exists a bijectiat : V(G) — D for which {v, w} is an edge IrE(G) if and
onlyif, for V := £L(v) andW := L(w), VoW = WoV (or, equivalentlyD (V, W) = ¢)
andV andW are the only cocircuits conforming o W. We will call a grapha cocircuit
graphif it is the cocircuit graph of some oriented matroid.
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We will call a bijection£ : V(G) — D like in Definition 2.1.1 arassociating bijection

Considering a finite pseudosphere arrangeest {S: | e € E} in the Euclidean space

RI+1 as introduced in Section 0.1 and the corresponding oriented maittdide cocircuit

graph ofM is the 1-skeleton of the cell comple on S¥ induced byS$. An illustration

of an oriented matroid by a pseudosphere arrangement and the corresponding cocircuit
graph is shown in Figure 2.1.

Figure 2.1: Pseudosphere arrangement and cocircuit graph

Compared to the set of covectdFs the cocircuit graph is a compact and simple structure
(e.g., the numbeffy of cocircuits is not larger than the numbgrof faces of any other

fixed dimension > 0, see Theorem 1.5.1). Itis a natural to ask, to what extend an ori-
ented matroid is determined by its cocircuit graph, e.g., whether the cocircuit graph of an
oriented matroidM determines the isomorphism class(#) of M, i.e., (equivalently,

see Corollary 1.4.3) the face lattice #f. The general answer to the latter question is
negative as Cordovil, Fukuda, and Guedes de Oliveira [CFGdOO0O0] presented two non-
isomorphic oriented matroids of rank 4 which have isomorphic cocircuit graphs; for rank
at most 3 they gave an affirmative answer. However, the question remained open for co-
circuit graphs of uniform oriented matroids (which we will simply aatiform cocircuit
graphg, and positive answers are possible when some information about the oriented ma-
troid is added to the cocircuit graph, as we discuss in the following using the notion of
labels.

A label of a graph ({or, short,a graph labe) is a mapL defined on the vertex s&t(G),
and we callL (v) the label ofv € V(G) (and, shorta vertex labéel. We will consider the
following three types of labels of cocircuit graphs:

2.1.2 Definition (OM-Label) For a graphG and an oriented matroid( we call a label
L of G the OM-label (oriented matroid label) of G w.ti( if G is the cocircuit graph of
M and every vertex is labeled by the cocircuit associatedutowe call a labell of a
graphG an OM-label of Gif £ is the OM-label oiG w.r.t. some oriented matroid.
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Obviously is an oriented matroid explicitly given by its OM-labeled cocircuit graph. If
we omit orientations, we obtain a labeling by the underlying matroid:

2.1.3 Definition (M-Label) For an OM-labelf of a graphG we call a labelL of G the
M-label (matroid label) of G induced by if every vertexv is labeled by the zero support
£L(v)% we call a labelL of a graphG an M-label of Gif L is the M-label ofG induced
by some OM-label 0.

The labels of two vertices given by an M-label are the same if and only if they correspond
to negative cocircuits; we call such vertiGagipodesor an antipodal pair and define:

2.1.4 Definition (AP-Label) For an M-labelL of a graphG we call a labelA of G the

AP-label (antipode label) of G induced byilevery vertexv is mapped to thantipode

A(v) = v of v which is the unique vertex € V(G) \ {v} such thatL(v) = L(v); for a

graphG we call a label ofG an AP-label of Gf it is the AP-label ofG induced by some
M-label of G.

We will consider the following reconstruction problems:

OM-Labeling Problem: Given a cocircuit graph G with M-label L,
find an OM-label£ of G such that L is the M-label of G induced iy

M-Labeling Problem: Given a cocircuit graph G with AP-label A,
find an M-label L of G such that A is the AP-label of G induced by L.

AP-Labeling Problem: Given a cocircuit graph G (without label),
find an AP-label of G.

We survey in the following the known results concerning these labeling problems, includ-
ing the results presented in this chapter; see also Figure 2.2 for a corresponding illustration
(an arc marked b¥ indicates that the reconstruction is not possible in general, as the ex-
ample in [CFGdOO00] shows).

T

G+ OM-label = G+ M-label = G+AP-label = G

up to reorient. up toisomorph.  up to AutG)
- 7

~ 7

~ 7
for uniformoriented matroids

Figure 2.2: Diagram of reconstruction problems and results

The OM-labeling problerhas always a solution which is unique up to reorientation, which
was proved in [CFGdOO00]. We will give a slightly simpler proof in Section 2.2 and
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present a simple algorithm for the construction of the OM-label with a running time of
O((fo + f1)n), wheren = |E| is the cardinality of the ground set. For our complexity
analyses we assume that every elementary operation (such as an addition or comparison
of single elements) can be computed in constant time.

The M-labeling problenthas in general no solution which is unique up to isomorphism,
as can be seen from the mentioned example in [CFGdOO00]. However, if the rank of the
oriented matroid is at most 3 or if the oriented matroid is uniform, the M-label is deter-
mined (up to isomorphism) by the AP-labeled cocircuit graph, which was also proved in
[CFGdOO00]. We discuss the uniform case in Section 2.3 and present an algorithm which
solves the problem i®©(fop - f1) elementary steps; similar to the proofs in [CFGdOO00],
we consider in the construction the so-caltadine cyclesof the cocircuit graph and a
distance notion defined on the coline cycles.

The AP-labeling problerwill turn out to be the most difficult of all three problems. We
show in Section 2.4 that in the uniform case AP-labels can be reconstructed in polynomial
time from the given graph up to graph automorphisms. This implies that the isomorphism
class of a uniform oriented matroit is determined by its cocircuit graph. It is still open
whether there is a unique AP-label, and also the non-uniform case remains open (except
for rank at most 3, which was also discussed in [CFGdOO00]).

Strongly related to the reconstruction problems is the question whether and how cocircuit
graphs (with or without labels) can be characterized:

Characterization Problem: Decide whether a given graph (without or with label) is a
cocircuit graph.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization). When(snk= 3, the cocircuit
graphG of M is planar and has a unique dual, which is the tope graph ¢€f. Chap-

ter 1); the polynomial characterization of tope graphs for (k= 3 [FH93] leads to a
polynomial characterization for rank 3 cocircuit graphs.

2.2 Orientation Reconstruction from Matroid Label

We consider the OM-labeling problem for a given M-labeled cocircuit g@pif some
oriented matroidM. Remark that for oriented matroids of rank O or 1 the problem is
trivial (cf. Lemma 0.7.14): In rank O there is no cocircuit at all, and the cocircuit graph is
the empty graph; in rank 1 there are exactly two cocircdiend—Z, the cocircuit graph
consists of two points and no edge. Let us assume in the following thatyénk 2.
Then the ground seE of M is determined by the given M-labé&l as the union of all
vertex labeld. (v).
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Before we start with the general case, we consider the case of rank 2 which can be char-
acterized easily (see also Figure 2.3):

2.2.1 Lemma A graph G is the M-labeled cocircuit graph of an oriented matroid of rank
2 if and only if

e G is acycle of even length and

e two distinct vertices, w € V(G) have the same vertex label if and only idndw
have maximal distance in G and

¢ the intersection of any two different vertex labels is always the same (namely the set
of loops).

Proof It is not difficult to see that compared to tope graphs the roles of cocircuits and
edges interchange, i.e., the vertices in a rank 2 tope graph become the edges in the corre-
sponding cocircuit graph and vice versa. As rank 2 tope graphs are cycles of even length,
S0 are cocircuit graphs of rank 2 oriented matroids. The characterization of oriented ma-
troids of rank 2 in Corollary 1.4.4 implies the remaining claims. [ |

Figure 2.3: Cocircuit graph of an oriented matroid of rank 2

Let G be the cocircuit graph of an oriented matroid, with associating bijectiorC :
V(G) - D. As explained above, an ed@e w} € E(G) corresponds to a 1-facé of

M which is determined by = £(v) o £L(w). The zero support a 1-face is called coline.
For example, the coline which correspondsgiow} is Z° = £(v)° N L£(w)°.

2.2.2 Definition (Coline of an Edge)Let G be a cocircuit graph of an oriented matroid
of rank at least 2 wittM-label L. For an edgégv, w} € E(G) we callU := L(v) N L(w)
the coline offv, w} and say thatv, w} corresponds to U

2.2.3 Lemma Let G be the M-labeled cocircuit graph of an oriented matroid of rank at
least 2. The edges in G which correspond to the same coline form a cycle in G.
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Proof Let M be an oriented matroid of rank at least2the cocircuit graph ofi(, andL

the M-label ofG w.r.t. M. Consider any colin® and the contraction mine#(/U to that
coline, which is an oriented matroid of rank 2 (cf. Corollary 0.4.6 (ii)). It is not difficult to
see that the subgraph @ induced by the verticeswith U C L (v) is the cocircuit graph

of M/U (i.e., a cycle of even length, see Lemma 2.2.1) and the edges of this induced
subgraph are the edges@whose coline idJ. [ |

2.2.4 Definition (Coline Cycle) Let G be theM-labeled cocircuit graph of an oriented
matroid of rank at least 2, and let be a coline. The cycle(U) formed by the edges
corresponding to coling is calledthe coline cycle of U

Compared to the work of [CFGdOO00] we present a slightly simplified proof for the claim
that the reorientation class Q) is determined byG andL, and the proof is directly
used for a simple polynomial algorithm OMBELFROMML ABEL that solves the OM-
labeling problem. The key argument is given by the following proposition:

2.2.5 Proposition Let £ be an OM-label of G and L the M-label of G induced gy
and for any non-loop & E let G(e) be the subgraph of G induced by the verticesith
e ¢ L(v). Then there are exactly two connected componentsef, @nd any two vertices
v andw belong to the same connected component if and oatyife = L(w)e # 0.

A proof of Proposition 2.2.5 was given in [CFGdOO00], in the proof of Theorem 2.3. Our
proof is based on the same ideas. The following property of hyperplanes in a matroid (see
Section 0.3) is needed:

2.2.6 Lemma Let(E, 4A) be a matroid of rank > 2 with groung set E and set of fIa'Es
and set# of hyperplanes. For any two different hyperplanesHHe #¢ such that HY H
is not a coline and any € E \ (H U H) there exists a hyperplane’H # such that

(i) e¢ H,
(i) H N H'isacoline, and
(i) HNH S H NH.

Proof LetU be a coline such thad N H S UG H, and letU be the intersection of all
hyperplanes containing and somef H \U If Ug U, thenU is a hyperplane and
every hyperplane containing and somef H\Uis equal taJ, by thisU c U = H
andU C H n H, a contradiction. We concludg = U, and sinces ¢ U there exists a
hyperplaneH’ containingd and somef € H\U such thae ¢ H’. The claim follows for
H’, observing thaf € H'\ H (remarkf ¢ U D HNH,sof ¢ HyandHNH' =U.m

Proof of Proposition 2.2.5 Let v andw be vertices inG(e). If L(v)e = —L(w)e, then
the definition of a cocircuit graph implies that on any path@rfrom v to w there is
a vertexu with £(u)e = 0, i.e.,v andw are not connected iG(e). Let us assume
L(v)e = L(w)e # 0. The claim follows when we show thatand w are connected
in G(e). If L(v) = L(w) then by cocircuit axiom (C2) = w, otherwise we apply
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(possibly repeatedly) Lemma 2.2.6: There exists a finite sequence of hyperplanes:
Ho, H1, ..., Hk := L(w) such thae ¢ H; for alli € {0, ...k} andU; := Hi_1 N H; isa
coline for alli € {1, ...k}. By cocircuit axiom (C2), there exists for evarg {0, ..., k}

a unique vertex; such thatL (vj) = H; and£L(vj)e = L(v)e. We show that for all
i €{1,...,k}the verticesj_1 andv; are connected i (e): Bothv;_; andv; are on the
coline cyclec(U;) of Ui in G, and sinceL(vi_1)e = £L(vj)e there is a (unique) path on
c(Uj) fromvj_1 to v in G(e). [ ]

The property of an M-labeled cocircuit graghwhich is stated in Proposition 2.2.5 leads
directly to a simple algorithm which solves the OM-labeling problem for rank at least
2. For every elemene € E determine the two connected components of the subgraph
G(e) of G induced by the vertices with e ¢ L(v), and assign a sign to all vertices

in one component, a sign to the vertices in the other component, 0 to the remaining
vertices. A more formal description of this algorithm OM&ELFROMML ABEL is given

by Pseudo-Code 2.1.

Input: A cocircuit graphG with M-label L.
Output: An OM-label £ of G such thatL is the M-label ofG induced by.L.

begin OMLABELFROMML ABEL(G,L);
E:= U L(;
veV(G)
forall e E do
G(e) := the subgraph o6 induced by{v € V(G) |e & L(v)};
if G(e) is emptythen
forall v € V(G) do L(v)e := 0 endfor
else
let w be any vertex irG(e);
forall v e V(G) do

0 ifeelL(v),
L()e:=1 + ifegL(v)andvisconnectedta in G(e),
— otherwise
endfor
endif
endfor;
return £

end OMLABELFROMML ABEL.

Pseudo-Code 2.1: Algorithm ONMABELFROMML ABEL

2.2.7 Theorem Given as input a cocircuit graph G with M-label L, then the algorithm
OMLABELFROMML ABEL terminates with correct output after at most(@p + f1)n)
elementary arithmetic operations, wherg £ |V(G)|, f1 = |[E(G)|, n = |E|. The
orientation is unique up to reorientation.
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Proof The correctness of the algorithm OMBELFROMML ABEL and the uniqueness
of the OM-label up to reorientation follow from Proposition 2.2.5. For the complexity
observe that for every of theelements irkE the induced subgrap&(e) and its connected
components can be computedxt fo + f1) (e.g., by a breadth-first-search technique).

2.2.8 Corollary ([CFGdOO0Q]) The reorientation class of an oriented matroid is deter-
mined by its M-labeled cocircuit graph.

2.3 Reconstruction of Uniform Matroid Labels from An-
tipodes

We discuss in this section the M-labeling problem where the given ggaptthe cocircuit
graph of some uniform oriented matroid and where an AP-l&bafl G is given. Without
loss of generality our concern we will be to find an M-label®fvhich is induced by a
uniform oriented matroid. Note that for oriented matroids of rank O or 1 the M-labeling
problem is trivial, and we can assume for the following that a4k > 2. We present

a polynomial algorithm MIaBELFROMAPLABEL which computes an M-labdl of G
such thatA is the AP-label of5 induced byL. By this we extend the result of [CFGdOOQ00]
which states that such an M-label is unique up to isomorphism on the ground set, which is
the union of the vertex labels. Note that for the algorithm ABELFROMAPLABEL no
information like M, E, or rank M) is given; we will only useG, the given AP-labeling

A : v —~ v, and the information tha# is uniform. This uniformity implies many
structural properties:

2.3.1LemmalLet M = (E,¥) be a uniform oriented matroid with n= |E| and
r .= rank(.M) > 2. Then:

(i) Every subset of - 1 elements is a hyperplane, and every subset-efxelements
is a coline.

(i) All coline cycles have length- (n —r + 2).

(i) The coline cycles of any two different colines &hd U, have a common vertex if
and only if{lU; \ Uz| = 1.

Proof The claims follow quite directly from the uniformity of(. Observe that a vertex
v is on the cycle of a colin® if and only if the hyperplane associatedudas the form
U U {e} for somee € E \ U. [ ]

2.3.2 Definition (Distance of Coline Cycles) et M = (E, ¥) be a uniform oriented
matroid,G its cocircuit graph with OM-label, L the M-label ofG induced by.L, and

vo € V(G) an arbitrary vertex. For a coling € E we call|U \ L(vo)| the distance of U
to vg and alsahe distance of the coline cycle of U .

The distance of a coline cycle is also defined by the cocircuit graph and the coline cycles
(i.e., without hyperplanes and colines):
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2.3.3 Corollary ([CFGdOO0Q]) The coline cycles of distance O#g are the coline cycles
through vg, the coline cycles of distance 1 are those which intersect a coline cycle of
distance 0 but do not meeg; inductively the coline cycles of distancetkl are exactly
those that intersect at least one coline cycle of distance k but which are not of distance k.

The following lemma states an important property of coline cycles:

2.3.4 Lemma ([CFGdOOQQ]) Let M = (E, ) be a uniform oriented matroid, = |E]|,
andr :=rank(.M) > 2. Let p be a pathh = vg, v1, v2, ..., vi—_1, v = v in the cocircuit
graph G ofM connecting an antipodal paiw, v). Then p is a shortest path in G from
tovifandonly ift=n—r + 2, and then there exists a coline @ E such thafvj_1, v}
is an edge on the coline cycle of U for al&i {1, ..., t}.

Proof Let L be the M-label induced by the OM-label Gfw.r.t. M. Obviously there are
2-(r — 1) different paths from to v of lengthn —r + 2 that are defined by thre— 1 coline
cycles throughy andv. On the other hand, gt be a path from to v, and letJ C E be
the set of elements that belong to some but not all labels of the vetticesp. Since by
uniformity |L(vi—1) \ L(vj)| = 1 for each edgévi_1, vi} on p, L(v) = L(v) implies that
the cardinality|J| is a lower bound for the length ¢f. CertainlyE \ L(v) € J,andifp
does not follow only one coline, thgh (v) N J| > 2, i.e., then the length g is at least
[E\L)|+2=n—-r1+3. [ |

The algorithmic idea is first to detect the coline cycles of the cocircuit graph with an algo-
rithm LISTCOLINECYCLES with input and output as specified in Pseudo-Code 2.2, and
then to use these coline cycles to construct an M-label with an algorithmadLFROM-
COLINECYCLES (see Pseudo-Code 2.3); the two steps could be done in parallel, but for
clarity and since there is no loss w.r.t. complexity we present the algorithme¥L-
FROMAPLABEL divided into this two parts (cf. Pseudo-Code 2.4).

Input: A cocircuit graphG with AP-label A, andvg € V (G).

Output: A list S of all coline cycles ofG such that every coline cycle € S
is given as a list of the vertices anin an order as they are adjacentgnand
such thatSis ordered with increasing coline distance to vettgxand among the
coline cycles of distance 1 those come first which intersect the first coline cycle
in S.

Pseudo-Code 2.2: Input and Output SpecificationISfrTCOLINECYCLES

Input: A list Sas specified as output o $TCOLINECYCLES.
Output: An M-label L of the graphG given by S.

Pseudo-Code 2.3: Input and Output Specification ofAdEL FROMCOLINECYCLES

It is not difficult to design an algorithm ISTCOLINECYCLES as specified in Pseudo-
Code 2.2 which runs in time of at mo§&i( fo f1), where as befordg = |V(G)| and
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Input: A cocircuit graphG with AP-label A.
Output: An M-label L of G such thatA is the AP-label ofG induced byL .

begin ML ABELFROMAPLABEL(G, A);
Choose any vertex € V(G);
S:= LISTCOLINECYCLES(G, A, vp);
return MLABELFROMCOLINECYCLES(S)
end MLABELFROMAPLABEL.

Pseudo-Code 2.4: Algorithm MABELFROMAPLABEL

f1 = |E(G)|: it is sufficient to visit all antipodal pairs with increasing coline distance
to v, to determine for each pajp, v) the 2r — 1) shortest paths betweenandv, and

to combine two such paths to a coline cycle when they contain antipodal vertices (cf.
Lemma 2.3.4).

The key ideas of algorithm MABELFROMCOLINECYCLES are an initialization of the
labels as far as the freedom of isomorphism allows, and then the propagation of the labels
observing necessary conditions; finally the coline cycle connectivity will be used to prove
that the construction of the M-label has been complete. The necessary conditions for
propagation and the coline cycle connectivity are stated in the following lemma:

2.3.5 Lemma Consider the cocircuit graph G of a uniform oriented matroid, an M-label
L of G, and the coline cycles in G given by L.

() If v andw are vertices on a common coline cycle ¢ and not antipodals, then the
intersection L(c) of all labels of vertices on c is equal to(i) N L (w).

(i) If v is a vertex on two different coline cycles ¢y, then L(v) = L(c1) U L(cp).

(i) Ona coline cycle of distancek 1to vg there are exactl@- (k+ 1) vertices that are
on at least one coline cycle of distance-K; every of these vertices is on exactly k
coline cycles of distance 1.

Proof All claims follow from the definition of an M-label and the uniformity af; see
also Lemma 2.3.1. [ |

For an M-labelL, we call for a coline cycle the setl (c) as introduced in Lemma 2.3.5
the label of ¢ We discuss now initialization and propagation of the labels in the construc-
tion of an M-label by algorithm MRBELFROMCOLINECYCLES. Consider a sef as
returned by algorithm ISTCOLINECYCLES.

Initialization. We can easily determime:= rank(.M) andn := |E| from S, since every
vertex appears on exactly-1 coline cycles and every coline cycle has lengtim2r +2).
Using the freedom of isomorphism we initialitgvg) := {1,...,r — 1}, and of course
L (vo) := L(vp), and the labels of the remaining &1 — r + 1) vertices on the first coline
cycleinSaresettdl,...,r —2}U{j}for j € {r,...n}, where antipodal vertices take
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the same label. Hence the label of the first coline cycl8is set to{1,...r — 2}; we
are still free to initialize the labels of the remaining coline cydesf distance O (i.e., the
coline cycles at a positione {2...,r —1}in S by L(g) := {1,...r =1} \ {i — 1}
(i.e., we initialize the label of every vertaxon ¢ that is different fromvg andvg by
L(v) := L(G)).

Propagation. In the order of listS, i.e., with increasing distance to vertey and starting
with the first coline cycle of distance 1 (this coline cycle is at positiom S) we do the
following for every coline cycle:

1. We determine the labé&l(c) as follows:

e If cis of distance 1 and intersects the first coline cycleSjrthe only two
distinct labels already initialized anhave the form{1,...,r — 2} U {j} for
jef{r,...nfandL(¢) ={1,...r =1} \ {i — 1} fori € {2...,r — 1}; the
label mustthen bé&(c) :={1,....,r =2} \ {i —1}U{j}.

e If cis of distance 1 and does not intersect the first coline cyc& then there
are two distinct labels already initialized on the coline cycighich have the
form{l,....r =1\ {i1—1}uU{jland{l,...,r — 1} \ {io — 1} U {j} for
i1,i2 € {2,...r =1} withi1 #i2andj € {r,...n}; the label must then be
their intersection, i.el.(c) :={1,...,r =1} \{i1 — 1} \{i2— 1} U{j}.

e If cis of distancek > 2, then we choose any two among the- 1 labels
already initialized ort; these labels are already determinedkby 2 vertices
of distancek — 1, hencel (c) is equal to the intersection of these two labels.

2. We addL (c) to L(v) for every vertexv on the coline cyclelL (v) := L(v) U L(C);
for the first time we seL(v) := L(c), and after the next change will(v) be
a (r — 1)-subset ofE, i.e., L(v) is then a complete vertex label and will not be
changed further.

Initialization and propagation describe the algorithm MIELFROMCOLINECYCLES,
hence also the algorithm MABELFROMAPLABEL is now complete (see Pseudo-
Code 2.4).

2.3.6 TheoremIf G is the cocircuit graph of a uniform oriented matroigt with
rank.M) > 2 and A an AP-label of G, then the algorithMiL ABELFROMAPLABEL
terminates with correct output in time (@ f1), where § = |V(G)| and fi = |[E(G)]|.
The M-label L constructed byiL ABELFROMAPLABEL is unique up to isomorphism on
the ground set.

Proof Let M = (E, D) be a uniform oriented matroiah, := |E|, r := rank(M) > 2;

in addition we set := (rfz) for the number of colines and denote Bythe cocircuit
graph of M. We have already seen that with ingatand A the algorithm determines

all labels correctly and—up to isomorphism—uniquely because of the properties stated
in Lemma 2.3.5 (note that in the special case (aik = 2, the labels are complete
after initialization of the first coline cycle). The complexity ofdTCOLINECYCLES was
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stated to beO( fo f1), and we will show that the complexity of MABELFROMCOLINE-
CycLEs is of orderO( fy) + O(r - u), which is also at mosO( fo f1) becausen > r
implies fo =2(,",) > 2(,",) = 2r and fy = 2u(n —r +2) > 4u, hencefo f; > 8ru. In
ML ABELFROMCOLINECYCLES We visit every vertex in every coline cycle not more than
some constant number of times (from thé&¢f,) operations). We modify the label of
every vertex at most twice, and since we can keep labels sorted we&{egdperations
for one modification, which leads to a total numbeffor) = O( f1) operations for all
label modifications. Finally we need for every of the&oline cyclesO(r) computations

to find its label. n

2.4 Antipodes in Uniform Cocircuit Graphs

In this section we discuss how to solve the M-labeling problem for a cocircuit géaph

of a uniform.mM without AP-label, by this strengthening the result of the previous section.

Again we will not consider M-labels that are not induced by a uniform oriented matroid.

We first discuss how to construct an M-label when the labels of only two antipodal pairs
on a common coline are given:

2.4.1 TheoremIf G is the cocircuit graph of a uniform oriented matroid and there

are two different antipodal pairs labeled in G which are known to be on a common coline
cycle, then one can construct an M-label L of G in timefgX1), where § = |V (G)|

and i, = |E(G)|, and the AP-label of G induced by L is uniquely determined by G and
the two given antipodal pairs.

Proof Let v,v andw, w be two different antipodal pairs i@ that are on a common
coline cyclec. As for the label construction in the previous section= rank(.M) and the
cardinalityn of the ground set of( can be easily found from the degree@ — 1) of a
vertex and the distance—r + 2 of an antipodal pair. LeE be a set of cardinality. We

know that for any M-labelL of G with ground setE the vertex labeld (v) = L(v) and

L(w) = L(w) are(r —1)-subsets oE andL(c) = L(v)NL(w) isan(r —2)-subset ofg,
hencelL (v) = L(c)U{e,} andL(w) = L(c)U{e,} fore,, e, € E\ L(c), wheree, # e,.

There are 2 (r — 1) shortest paths betweenandv, each corresponding to one half of a
coline cycle (see Lemma 2.3.4), and the same holds fandw; we have to detect which
paths belong to the same coline cycle. It is easy to find the shortest paths belonging to the
coline cyclec which contains the given antipodal pairs. Two shortest paths not belonging
to ¢, say p1 betweerw andv and p2 betweernw andw, belong to coline cycles; andcy

with labelsL(c;) = L(v)\{e1} andL(c2) = L(w)\{ex} for somees, & € L(c), and since
L(c1)\L(co) = {ey, e} \{e1}, the pathg; and p, have a common vertex (amtersection
vertey if and only if e = e (cf. Lemma 2.3.1 (iii)); the label of the intersection vertex
isL(c) U{e,, ey} \ {e1}. Itis easy to see that there are exactly(2 — 2) intersection
vertices (namely — 2 antipodal pairs) with labels(c) U {e,, e,} \ {g} for g € L(c),

and hence any two intersection vertices are on a common coline cycle with a label of
the formL(c) U {e,, &,} \ {&, €j}. Therefore the distance of two intersection vertices

in G is less or equal tm — r + 2 with equality if and only if they are antipodals; by
this we can identify shortest paths belonging to the same coline cycle. Hence we can
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determine all coline cycles of distance Ou@nd with the same technique for the rest of
G, extending the labeling as in the algorithm W&keL FROMCOLINECYCLES. Also the
complexity discussion is similar to the discussion above, it is sufficient to count all costs
for computing shortest paths and identifying antipodal intersection vertices correctly (for
every of thefg vertices there are total costs Of f1)). [ ]

Theorem 2.4.1 implies:

2.4.2 Corollary There is an algorithm which solves the M-labeling problem for a given
cocircuit graph G of a uniform oriented matroitk = (E, £) without AP-label in time
O(fg fin?), where b = [V(G)|, f1 = |E(G)|, n= |E|.

Proof For a choice of two pairs of vertice®, v) and (w, w) from G, we construct a
label L of G as in the proof of Theorem 2.4.1 (this might fail, thenv) and(w, w) are
not two antipodal pairs); iL. is an M-label ofG (we can check this in tim@(f(f’nz),
see Theorem 2.5.1), we stop, otherwisev) and(w, w) are not two antipodal pairs and
we start over with other pairs. Obviously it is sufficient to check pairs where} and
{v, w} are edges il and one edge is fix, i.e., there are at mOstf1) pairs to check. m

It remains to discuss whether the M-labels of a gr&plhat is the cocircuit graph of

a uniform oriented matroid are all isomorphic, i.e., whether for any two M-labels
V(G) — 2F andL : V(G) — 2F there exists a bijectiop : E — E such that_ = ¢L.

We will prove this up to graph automorphism in Theorem 2.4.4, using Theorem 2.4.1 and
the following Lemma 2.4.3:

2.4.3 Lemma Let G be the cocircuit graph of a uniform oriented matroitl = (E, D)
with rank(M) = 2 or rank(.M) = 3, andv, w € V(G). The distance from to w in G is
at most|E| — rank(:M) + 2 with equality if and only iy andw are antipodals.

Proof Let .£ be an OM-label ofG w.r.t. M, and setV := .L(v) andW := £L(w). We
assume tha¥ andW are not on a common coline and therefore @vlk = 3, otherwise

the claim is obviously correct. Without loss of generality we assumeBhat{1, ..., n},

VO = (1,2}, 3 e WO andW; = W, = V3 = +. We consider foi € | := {1, 2, 3}

the colines{i} and their coline cycles;. Fori < | let X! be the cocircuit defined by

Xi = + and X'j = 0forj e 1\ {i}, then the vertex; corresponding toX' is on the
intersection otj andcy for {j, k} = I \ {i} (especiallyp = x3). Denote byp; the shorter

of the two paths om; betweenx; andxx, where{j, k} = | \ {i}. Then the uniorp of

the pathsp;, p2, ps forms a cycle inG, and a vertexy € V(G) is on p if and only if
L) € {0, +}\ ({0} U{+}"). Asv andw are onp, it is sufficient to prove that the
length of p is less than &h — 1). We show that there are at mosin2— 3) verticesy

on p different fromxz, X2, andxs: Such a vertex is characterized by:(y)e = 0 for
somee € E\ | andL(y); = O for somei e |, and thent(y)j = +, L(y)kx = + for
{j,k} = 1'\{i}. Assume that for somee E\I there exist all three vertices, i.e., there exist
three cocircuits ifD whose signs corresponding tp2, 3, eare(0 ++ 0),(+ 0+ 0),
and(+ + 0 0); then the cocircuit axiom (C3) applied to the first and the negative of the
second implies a contradiction to axiom (C2) for the third cocircuit. Therefore there exist
for everye € E \ | at most two verticey on p with £(y)e = 0. |
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The following theorem is based on a idea of Babson [BFF01]. We denqgte lfy after
o) the concatenation of maps o and byr —! the inverse of a bijection.

2.4.4 Theorem Let G be the cocircuit graph of a uniform oriented matraidand L and
L M-labels of G. Then there exists a graph automorphissAut(G) such that Lg and
L are isomorphic, i.eq Lg = L for some permutation.

Proof Let L and L be M-labels ofG, and denote the induced AP-labels Byand A,
respectively. Remark thaa~1 = A e Aut(G) and A1 = A € Aut(G). Since for any

g € Aut(G) the AP-label induced by g is g~*Ag and because of Theorem 2.3.6, it is
sufficient to findg € Aut(G) such thatg™ 1Ag = A. As Aut(G) is finite, the order of
AA € Aut(G) is finite. If the order ofAAis odd, say R + 1 for a nonnegative integér
theng := (AAX is sufficient. We will show that the order &A cannot be even.

We show thai AA)? = 1 impliesAA = 1 (hence the order oA A cannot be 2). LeE
denote the ground set bf and as usual := |E| andr := rank(.M). Assumg AA)2 = 1,
then the AP-labels induced HyA andL are equal, so, by Theorem 2.316A andL are
isomorphic, i.e., there exists a permutatmru)f the elements ifE such thatrL = LA.
AsnrL = 7LA = LAA = L impliesz?2 = 1, the orbits ofr must all have order 1 or 2,
so we can choose a unibhC E of these orbitswithU| =r —2 or|U| =r —3. Consider
the subgraplGy of G induced by the vertex s&t(Gy) := {v € V(G) |U C L(v)}.
Remark thaV (Gy) is closed undeA by definition and also closed undérbecause of
LA = 7L and7(U) = U. Gy is the cocircuit graph of a uniform oriented matroid
contraction minor with rank’ :=r — |U| € {2,3} andn’ := n — |U| elements in the
ground set, so Lemma 2.4.3 implies that for every vertex V (Gy) there is a unique
vertexv € V(Gy) such that the distance (By fromv tovis atleasty —r’'+2 = n—r +2.
On the other hand — r + 2 is the distance i between a vertex and A(v) (and also
betweerv and A(v)), and the distance in the subgraphy cannot be smaller. Therefore
A(v) = A(v) =7 for v € V(Gy), so, by Theorem 2.4.14 = A.

Assume that the order dfAis 2k for an integek > 1. If k = 2k’ setl := L(AAX 1A,
if k = 2k’ + 1 setl := L(AAX. Let A denote the AP-label induced by the M-label
L, then in either casd A = (AA, hence(AA)2 = 1. Thus by the previous case
(AA)" AA = 1, contradicting the assumption that the ordeAd$is 2k. [ |

2.4.5 Corollary The isomorphism class of a uniform oriented matroid is determined by
its cocircuit graph.

Proof The proof follows from Corollary 2.2.8 and Theorem 2.4.4. ietand M be two
uniform oriented matroids which both have the same cocircuit graph, i.e., there exists a
graph isomorphisnp : G — G between the cocircuit grap® of M and the cocircuit
graphG of M. Let .£ and.£ denote OM-labels o5 and G w.r.t. M and M and L

and L the M-labels induced by and ., respectively. By Theorem 2.4.4 there exists

g € Aut(G) such thatLg andL¢ are isomorphic. Then Corollary 2.2.8 implies thag
and.L¢ are isomorphic, which is equivalent to say thiétand.M are isomorphic. |
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2.5 Characterization of Cocircuit Graphs

We discuss in this section the characterization problem for cocircuit graphs of uniform ori-
ented matroids and of any M-labeled cocircuit graphs. We have presented in the previous
sections polynomial algorithms for the corresponding M-labeling and the OM-labeling
problems. These algorithms did not check the correctness of the input. In this section
we add input checks to the above algorithms and use them for the design of polynomial
algorithms that solve the characterization problems of M-labeled cocircuit graphs and of
(unlabeled) uniform cocircuit graphs.

Note that the algorithms for the M-labeling of cocircuit graphs of uniform oriented ma-
troids and for the OM-labeling of M-labeled cocircuit graphs may run into problems if
their input is not correct. If such a problem is detected on run time, it will cause the al-
gorithm to abort (we say then, the algorithails), otherwise the algorithm will terminate
with some output. In neither case will the complexity of the algorithms be affected. If
an algorithm fails, we know that its input was not correct, otherwise the output of the
algorithm will be used to decide whether the input was correct or not.

We discuss first the algorithmic characterization of M-labeled cocircuit graphs.

2.5.1 Theorem Let G be a graph with label L. V(G) — 2E. There exists an algorithm
which decides whether G is a cocircuit graph with M-label L or not, and this algorithm
runs in time Q f$n?), where § = [V(G)| and n:= |E|.

Proof First we use the algorithm OMABELFROMML ABEL in order to obtain a label

L of G. Then we check the cocircuit axioms (CO0) to (C3) for the set of all vertex labels
L(v); if not all axioms are valid, we know that the inpGtandL was not correct, i.e.,

we can stop and report thét is not a cocircuit graph with M-labdl. If (CO) to (C3)

are valid, we construct the cocircuit gra@y: of the oriented matroid defined hg and
compareG , with the input graplG. If G andG_ are the same (with vertices identified

as they associate to the same cocircuits), thes a cocircuit graph with M-labdl, oth-
erwise not. It remains to discuss the complexity of the above characterization algorithm;
as we do not use any sophisticated data structure, our complexity result may be improved
further. With f; = |E(G)|, we have a complexity oO((fo + f1)n) for OMLABEL-
FROMML ABEL in order to computel; we check the cocircuit axioms which is trivially
possible inO( fé”nz) elementary arithmetic steps. If all axioms are valid we construct the
cocircuit graphG_ from £ which can be done i©O( fo3n) elementary arithmetic steps

as follows: The vertex set @b, is the same as foB. For every vertex € V(Gg) we
determine inO(fOZn) steps all adjacent vertices by first collectingalle V(G_,) for

which D(L(v), £(w)) = @, then taking as the adjacent verticesvadhosew for which

(£L(v) o L(w))? is maximal among all such sets withfrom the collection. The compari-

son of G » andG can be done together with the constructiorigf. Obviously the overall
complexity is bounded b (( fo + f1)n) + O( f03n2), where the later term is dominating
because of; < f2. n

We discuss now the algorithmic characterization of unlabeled cocircuit graphs of uniform
oriented matroids.
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2.5.2 Proposition Let G be a graph. There exists an algorithm which decides whether G
is the cocircuit graph of some uniform oriented matrokl ) or not, and this algorithm
runs in time Q 3 fin?), where § = [V(G)|, f, = |[E(G)|, and n= |E|.

Proof First we use the algorithm described in Section 2.4 in order to obtain allabel

G and to decide whethés is a cocircuit graph with M-label.. This is possible in time
O(fé” fin?). It remains to check whethes is the cocircuit graph of someniform ori-
ented matroid. For this we simply check whettigi= 2(, ") and whether all labels (v)
have cardinality — 1, wherer is determined from a vertex degree (e.g., see initialization
of algorithm MLABELFROMCOLINECYCLES). |

2.6 Open Problems

We discuss in this section some open problems that are closely related to the results of the
present chapter. We concentrate on the case of uniform cocircuit graphs.

We have proved that the pairs of antipodal vertices are determined by the cocircuit graph
of a uniform oriented matroid up to graph isomorphism, butit is an open question whether
they are uniquely determined by the graph:

Open Problem 1: Does there exist a uniform cocircuit graph G with AP-labels A and
A such that A A?

We know that in the uniform case the distance between two antipodal vertices is
|[E| — rank(:M) + 2 and that there are exactlyrank(.M) — 1) edge-disjoint shortest
paths between them. We do not know whether this property is enough to characterize the
antipodal pairs; if it is sufficient, we can detect the negative of a cocircuit quite easily
(remember that one can compute efficiently ramlk and|E| from |V (G)| and|E(G)|):

Open Problem 2: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(:M) > 2 and AP-label A and, w € V (G) such thatw # A(v)
and & (v, w) = n—r + 2, where n= |E| and r = rank(.M) are determined by G?

Open Problem 3: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(:M) > 2 and AP-label A and, w € V (G) such thatw # A(v)
and there are exactl2(r — 1) edge-disjoint shortest paths betwaeandw?

Itis also an open question whether antipodal pairs are characterized as farthest@airs in
i.e., whether the distance between two verticendw in G is equal to the diameter if
and only ifv = w. Itis easy to see that this is not true for non-uniform oriented matroids.

Open Problem 4: Does there exist a cocircuit graph G of a uniform oriented matroid
M with AP-label A and € V(G) such that & (v, A(v)) # diam(G), or such that
dc (v, w) = diam(G) for somew # A(v)?
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Finally it is an open problem whether the diameter of a cocircuit graph is bounded linearly
inn=|E]|:

Open Problem 5: Does there exist a constant k such that for every cocircuit graph G of
an oriented matroid = (E, ) holdsdiam(G) < k- |E|?

We can show the following quadratic bound on the diameter of a uniform cocircuit graph:

2.6.1 Proposition Let M = (E, ¥) be a uniform oriented matroid and G its cocircuit
graph. Note that r= rank(.M) and n= |E| are determined by G. The diameter of G is
bounded by

min(r —2,n—r) n—r —k
diam(G — 2 _ 1).
lamG) <n—r +2+ kZ:; (L 5 J—i— )

Proof The proof is mainly based on Lemma 2.3.5 (iii). Fix any vertgx V(G). The
maximum distance of any coline cycle @is bounded by — 2 (since|lU| =r — 2 for
any colineU) andn —r + 1 (sincelU \ L(vg)| < |E\ L(vg)] = n—r + 1). Acoline
cycle contains & —r + 2) vertices, hence Lemma 2.3.5 (iii) implies that every vertex on
a coline cycle of distance —r 4 1 is on a coline cycle of distance— r. Consider some
vertexv € V(G). The above arguments imply that there is a coline cgabé distance

kK < min(r — 2, n —r) which containg. If k = 0 then obvioushdg (v, v) <n—r + 2.

If k > 1 we show thab is connected to some vertex which is contained on a coline
cycle of distancé — 1 with dg (v, v/) < L”‘rz_kj + 1, which implies the claim. We can
find suchv’ onc, sincec contains 2k + 1) vertices on at least one coline cycle of distance
k—1 and hence@ —r —k) vertices different from and its antipod@ which do not have
this property (see Lemma 2.3.5 (iii)). As every pair of antipodes is contained in the same
coline cycles, the minimum distance oto av’ which lies on a coline cycle of distance
k — 1is at most "=5=K | + 1. n

The above bound is tight in the special (and trivial) cases thete2 orr = |E|. Fur-
thermore a similar proof extends the bound to some quadratic bound for cocircuit graphs
of general oriented matroids.
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Chapter 3

Generation of Oriented Matroids and
Isomorphism Classes

3.1 Introduction

The present chapter introduces the generation problem of oriented matroids, the funda-
mental question of constructing all oriented matroids of some givemsifehe ground
setE and rankr:

Oriented Matroid Generation Problem: Given integersn andr,
generate all oriented matroid#( = (E, ) with n = |E| and r = rank(:M).

If we assume some canonical way to label the elementsEsay{1, 2, ..., n}, the ori-
ented matroid generation problem is finite: Obviousty| < 3" and hence there are not
more than £" oriented matroids with elements; furthermore any set of sign vectors can
be checked in polynomial time whether it is the set of covectors of an oriented matroid of
rankr. However, for methods of theoretical and practical interest we will have to exploit
the properties of oriented matroids much more.

The generation problem is motivated by several questions in discrete geometry which all
are very hard to resolve, such as classification of combinatorial types of point configura-
tions, polytopes, hyperplane arrangements, or realizability problems concerning abstract
combinatorial manifolds. Having a classification of combinatorial types makes it possi-
ble to test conjectures against this complete set of problem instances. On the other hand,
the study of methods for efficiently generating oriented matroids leads to new results for
oriented matroid representations.

Techniques for listing oriented matroids for smatndr were studied, among others, by
Bokowski, Sturmfels, and Guedes de Oliveira (e.g., [BS87, BS89, BGdOO00]) using the
chirotope axioms of oriented matroids. They also showed by successful applications to
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geometric embeddability problems the usefulness of oriented matroid generation. How-
ever, it seems that the methods are designed primarily for the case of uniform oriented
matroids. Our approach is based on graph theoretical representations of oriented matroids
(tope graphs and cocircuit graphs), and we will discuss methods which work for general
oriented matroids (especially also non-uniform oriented matroids). One of our methods
can be considered as a more general variant of an algorithm of Bokowski and Guedes de
Oliveira [BGdOO0Q] in a dual setting; however, our representation leads to implementa-
tions which are able to handle easily any single element extension in general rank, for
non-uniform and uniform oriented matroids as well.

Many questions which can be solved when having a complete list of oriented matroids
for givenr andn only depend on the isomorphism class, e.g., questions concerning the
face lattice of an oriented matroid. Furthermore, other classes of oriented matroids (like
reorientation classes) are usually obtained rather easily from the isomorphism classes.
This motivates to generate isomorphism classes first and then finer classifications in a
separate step. Finally, we will see that the methods for generating oriented matroids can
be restricted quite naturally to generation of isomorphism classes only. Hence, we will
concentrate on the generation of isomorphism classes:

Isomorphism Class Generation Problem:Given integers n and r,
generate all oriented matroids( = (E, ) with n = |E| and r = rank(:M) up to
isomorphism, i.e., generate one representative from every isomorphism class where
the representative is assumed to be simple.

With our restriction to simple oriented matroids the problem becomes well-defined as then
n = |E| is the number of parallel classes (of non-loop elements) which is an invariant of
the isomorphism class.

Before we introduce a general, incremental method for the generation of isomorphism
classes of oriented matroids in Section 3.3 and the underlying representations by graphs
(see Section 3.4), we consider the role of duality in the context of oriented matroid gener-
ation and some special cases where duality is very helpful.

3.2 Duality and the Generation of Isomorphism Classes

This section discusses the duality of oriented matroids in relation to the generation of
isomorphism classes. The key observation is that all oriented matroids on a grolthd set
and rankr can be obtained by dualization from a complete list of oriented matroids on
and rank|E| — r (see Corollary 0.5.10); the computation of the dual can be assumed to
be easy (cf. Lemma 0.9.8). Essentially it is sufficient to generate only one of the two lists
of oriented matroids. However, for the generation of isomorphism classes the dualization
approach is not that straightforward, as we will discuss in the following.

3.2.1 Definition (Co-parallel, Co-simple)Let M = (E, ¥) be an oriented matroid.
Two elements, f € E are calledco-parallelif e, f are parallel inM*. M is called
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co-simplef it has no coloops and no co-parallel elements (or, equivalenti(’ifis sim-
ple).

It will be useful to characterize co-parallel elements as follows:

3.2.2Lemmalet M = (E, ¥) be an oriented matroid. Two elementsfec E are
co-parallel if and only ifrank(:M /(E \ {e, f})) = 1.

Proof Let M = (E, ¥) be an oriented matroid. Consider its dutf*, two elements

e, f € E, and the deletion minam* \ (E \ {e, f}), which only has the two elemengs
and f in the ground set. By Lemma 0.7&and f are parallel elements & * if and only

if rank(M* \ (E \ {e, f})) = 1. By Corollary 0.5.10 and Lemma 0.5.2, this is the case if
and only if ranKM /(E \ {e, f})) = 1. [ ]

The main difficulty of the dualization approach comes from the fact that, according to our
definition of isomorphism of oriented matroids (see Definition 1.1.2), dualization does
not preserve isomorphism. For example, the duals of two isomorphic oriented matroids
which only differ by loops differ by coloops and are not isomorphic. One might prefer

a different definition of the notion of isomorphism which does not allow the introduction
or deletion of loops and parallel elements but only the renaming of elements; then duality
would preserve isomorphism, however, the one-to-one correspondence with face lattices
is lost. Another idea is to generate only those oriented matroids (up to reorientation and
renaming of the elements) which are simple and also co-simple; again, then the lists be-
come symmetric under dualization but no longer reflect a complete list of isomorphism
classes in our (preferred) sense.

In order to generate all isomorphism classes from dual oriented matroids, we will generate
a complete list of co-simple oriented matroids as we discuss in detail for the special cases
of oriented matroids witlm = |E| elements which are of rank n — 1, andn — 2.

An oriented matroid witln elements of rank = n is, up to the naming of the elements,
uniquely determined as follows (hence there is only one isomorphism class for every
r =n):

3.2.3 Lemma (Oriented Matroids with rank(eM) = |E|) Let M = (E, ¥) be an ori-
ented matroid withank(M) = |E|. ThenF = {—, +, 0}E. In particular, .M is uniform.

Proof Let M = (E, #) be an oriented matroid with rack() = |E|. By Corol-

lary 0.5.10, the dual of¢ is an oriented matroid of rank 0, henag¢* = (E, {0}) (cf.
Lemma 0.7.14). SinceM is the dual ofM* (see Proposition 0.5.8), the claims follows
from the definition of duals (Definition 0.5.1).

A different proof (which does not use duality) can be given using similar arguments as in
the proof of Lemma 1.5.3. [ |

Duals of oriented matroids of ranmk— 1 have rank 1. By Lemma 0.7.14, there are up to
renaming of the elements i only n oriented matroids of rank 1, saMo, ..., Mn_1,
where the index indicates the number of loops. The duals of those of them which are
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co-simple represent the isomorphism classes of the oriented matroids of ratik The
only non-loop element aM,,_1 is a coloop, hence(,,_1 is not co-simple. The remaining
oriented matroidsMo, ..., Mp_2 do not have coloops. If for som#(; there exist co-
parallel elements, f, then by Lemma 3.2.2 raiit(; /(E \ {e, f})) = 1. Obviously, this
is only the case if all elements i \ {e, f} are loops; hence, only(,_» (and Mp_1)
may have co-parallel elements, which is indeed the case. In d8am, .., My_3 are
co-simple, andM,,_» and.Mp_1 are not:

3.2.4 Lemma There are n— 2 isomorphism classes of (simple) oriented matroids of n
elements and rank A 1.

For the study of oriented matroids of rank- 2 we basically use the same idea as above

in the case of rank — 1. Without loss of generalityfg = {1, ..., n}. In order to count

all isomorphism classes in ramk— 2, we count the number of co-simple oriented ma-
troids onE of rank 2 up to permutation and reorientation of the elements. The case of
rank 2 is well-characterized (see Corollary 1.4.4), and every oriented matroid of rank 2
up to permutation and reorientation of the elements is represented by a circular diagram
indicating the cardinality and the (circular) order of the parallel classes of non-loop el-
ements and the number of loops. Figure 3.1 shows all diagrams with 2 and 3 elements
(the number in the center is the number of loops). These diagrams can also be written,

1 1 1 1
1
1 1 2
1
Figure 3.1: Diagrams of oriented matroids of rank 2 with 2 and 3 elements

e.g., in the following notation(l, 1; 0), (1, 1; 1), (1, 2; 0), (1,1, 1; 0). The 7 diagrams
with 4 elements are the last three diagrams of Figure 3.1, where the number of loops
is increased by 1, together with the diagrams of Figure 3.2, in short notdtjdn 2),

1 2 1 1 1
1
3 2 1
2
1
Figure 3.2: Diagrams of oriented matroids of rank 2 with 4 non-loop elements

1,2,1),(1,1,1,1),and(1, 3,0, (2,2,0), (1,1,2;0), (1, 1,1, 1; 0). The diagrams are
unique up to symmetry, e.gl, 2, 3; 0) is equivalent ta1, 3, 2; 0). Simplifying our no-
tation, we write(n, ..., ng) for (n1, ..., ng; O) if there is no loop. The diagrams for 5
elements are those for 4 elements with one additional loop and the following which do
not have loops(1, 4), (2,3),(1,1,3),(1,2,2),(1,1,1,2),(1,1,1,1,1). Such diagrams
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can be enumerated rather easily also for a higher number of elements. It remains to dis-
cuss which diagrams correspond to co-simple oriented matroids. An element is a coloop
if and only if the rank decreases if it is deleted. Hence, a coloop is the only element of
its parallel class and there is only one other parallel class of non-loop elements. Among
the diagrams discussed so far, those having a colooflaie, (1, 2), (1, 3), (1, 4), and

their extensions by loops. Two elememisf are co-parallel, according to Lemma 3.2.2,

if rank(M/(E \ {e, f})) = 1. Hence, a diagram has co-parallel elements if there is a par-
allel class of one or two non-loop elements and only one other parallel class of non-loop
elements or there are two parallel classes of one non-loop element and only one further
parallel class of non-loop elements. For example, co-parallel elements are in oriented
matroids represented [y, 1, 1), (2, 2), (1, 1, 2), (2, 3), (1, 1, 3). Finally, the diagrams

of co-simple oriented matroids up to 5 non-loop elements are: none with less than 4
elements(1, 1, 1, 1) with 4 elements, andl, 2, 2), (1,1, 1, 2), (1,1, 1, 1, 1) with 5 ele-

ments. Further enumeration leads to 8, 13, 25, 41, 73, 121, 219, 375, 682, 1219, 2245,
4107, 7680, 14305, 27007 co-simple non-loop diagrams fer6, .. ., 20, respectively.

The corresponding numbers with loops are the sums of theafirambers without loops.
Hence, there are 1, 4, 12, 25, 50, 91, 164, 285, 504, 879, 1561, 2780, 5025, 9132, 16812,
31117, 58124 isomorphism classes of (simple) oriented matroids ofrran2 with n
elements fon =4, ..., 20, respectively.

The duality approach for the investigation and enumeration of combinatorial objects has
also been applied earlier, as in the context of combinatorial types of convex polytopes
(e.g., [GuB7, LIo70, Stu88], see also Section 7.4). In some cases, the enumeration leads
to a formula for the number of instances for givenit is possible that there is also

a formula for the number of isomorphism classes of oriented matroids ofrani2.

The general case, where the rank is nph — 1, orn — 2, needs further investigation;

at least there is no simple characterization of the duals (which are oriented matroids of
rank 3 4, ...), and hence no straightforward enumeration of all cases. Even if duality is
very helpful in special cases and may reduce the amount of enumeration in higher rank
considerably, we restrict ourselves for the following investigations to primal generation
methods. These methods will handle all cases in the same way and produce complete
listings of isomorphism classes also for high rank.

3.3 Incremental Method for the Generation of Isomor-
phism Classes

This section presents an incremental method of the generation methods which are dis-
cussed in the following chapters. The oriented matroids are generated incrementally by
a number of single element extensions, i.e., extensions where only one new element is
introduced. This generation by means of single element extensions was used also in the
former methods for the generation of oriented matroids. We will extend these methods

such that only isomorphism classes of oriented matroids are generated.

For our methods we consider the following well-characterized cases as starting points of
the incremental generation process:
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e r < 1: Oriented matroids of rank 1 or O have been characterized in Lemma 0.7.14
and are rather trivial.

e I = 2: These oriented matroids are well-characterized (see Corollary 1.4.4).

e I = n: An oriented matroid whose rank equals the numbers of elements can be
characterized as stated in Lemma 3.2.3.

3.3.1 Definition (Extension, Single Element Extension)et be M = (E,¥) and
M = (E’, F’) oriented matroids. We call’ an extension of(( if M = M’ \ R for
someR C E’. We callM’ an single element extension #f if M = M’ \ f for some
feFE.

Every oriented matroidd = (E, #) can be obtained by single element extensions from
some oriented matroid with less th#a| elements. The incremental method may start
with some trivial oriented matroid with O or 1 element. Some of the single element exten-
sions may increase the rank (by introducing a coloop). The following lemma states that
such rank increasing extensions can be avoided:

3.3.2 Lemma Every oriented matroiad = (E, ) can be obtained by single element
extensions from an oriented matroid of same rank rank(.M) with r elements.

Proof Let M = (E, ¥) be an oriented matroid. If all elements ihare coloops then

r = |E|, otherwise there exists € E which is not a coloop, and by Corollary 0.4.9 (i)

the rank ofM \ eis the same as the rank @f. This proves that every oriented matroid

can be obtained by single element extensions from an oriented matroid of the same rank
r which hag elements. |

For the generation of oriented matroids (or of isomorphism classes of oriented matroids)
both approaches are of interest, generation from 0, 1, 2 and generation from =r
without increasing rank.

Let IC(n, r) denote the set of all isomorphism classes of oriented matroidswpénallel

classes irE \ E°, whereE? is the set of loops, and of ramk Every class in IQn, r) can

be represented by an oriented matroid of raniith n elements in the ground set which

is simple, i.e., there are no parallel elements f and no loops. We will always think of
IC(n,r) as a set or list of such representatives. Note that |C) is empty ifn < r or if

r < 2 andn # r. Figure 3.3 shows a diagram of all nonemptyiCr) up ton = 5, and

the arrows indicate how these isomorphism classes may be generated as discussed in the
following.

For the incremental step in the generation method consider sotmerlC By Corol-

lary 0.4.9 (i) every representative of (G r) is a single element extension of oriented
matroids represented in (€ — 1,r — 1) and IGn — 1,r). However, in general every
isomorphism class in 1@, r) is obtained in multiple ways since every oriented matroid
with n elements is a single element extension of up tfferent deletion minors, further-
more different single element extensions of one oriented matroid may be isomorphic. This
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IC (0, 0) IC(3,2) IC(4,2) IC(5,2)
IC (1, 1)
IC (2, 2)

IC (5, 3)

IC (5, 4)

IC (5, 5)

Figure 3.3: Relation of isomorphism classes of oriented matroids under single element
extensions fon < 5

problem of multiple generation will be attacked in (at least) two ways: not all but only suf-
ficiently many extensions are considered, and extensions are tested for being isomorphic,
e.g., by means of canonical representations of isomorphism classes. Let us summarize
which problems have been addressed in this section:

Single Element Extension Problem:Given an oriented matroidd,
find all single element extensions.gf.

Multiple Extension Reduction Problem: Find a rule which identifies redundant single
element extension such that every isomorphism class of oriented matroids can be
obtained by a sequence of non-redundant single element extensions.

Isomorphism Checking Problem: Given two oriented matroidg( and M’,
decide whethesm and .M’ are isomorphic or not.

Isomorphism Class Representation Problemfind a canonical representation of iso-
morphism classes of oriented matroids (say, in form of an algorltbReP) such
that the representation of two oriented matroids is the same if and only if they are
isomorphic:ICRER(M) = ICREP(M') if and only if M" € IC(M).

The combination of the elements discussed so far leads to an incremental method for the
generation of oriented matroids up to isomorphism. Starting fro2,I12), say, which
consists of one class (e.g., represented by the oriented matroidEwith {1, 2}, and

F = {—,+, 0}2), the method generates as sketched abova, G with increasingn

andr (i.e., in some order such that (€ — 1,r — 1) and IGn — 1,r) are generated
before IQn, r)). The diagram in Figure 3.3 shows which isomorphism classes of oriented
matroids are obtained from others by single element extensions (op=05). In a
variant of the method the starting point is(tCr) for givenr and generates i@, r)

with increasingn using only non-coloop extensions. Every single element extension is
then tested against the others w.r.t. isomorphism such that only a list of representatives of
IC(n,r) is kept.
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3.4 Graph Representations in Generation Methods

In any generation method, the choice of the underlying oriented matroid representation is
of great importance. The representations which are discussed in the following are mainly
based on graphs that are defined by the oriented matroids, namely tope graphs (see Chap-
ter 1) and cocircuit graphs (see Chapter 2). These graph representations are well suited to
the generation of isomorphism classes of oriented matroids:

e isomorphic oriented matroids have same cocircuit graph and same tope graph (in
fact, tope graphs characterize isomorphism classes; for cocircuit graphs we will add
extra information),

e graphs are a relatively compact structure,

¢ allisomorphism classes can be represented without special treatment (i.e., also non-
uniform cases in any rank),

e the graph representations are useful for the solution of all of the problems mentioned
in the previous section.

A short discussion of the well-characterized oriented matroids may illustrate the repre-
sentation of isomorphism classes by tope graphs and cocircuit graphs.

e The oriented matroid far = 0 (and hence = 0) is represented by the tope graph
which has one vertex and no edges, or the cocircuit graph which is the empty graph.

e The oriented matroid far = 1 (and hence = 1) is represented by the tope graph
which has two vertices connected by one edge, or the cocircuit graph which has two
vertices and no edge.

e The oriented matroid for = 2 andn > 2 is represented by the tope graph which
is a cycle of length &, or the cocircuit graph which is a cycle of length &ee
Proposition 1.2.9 and Lemma 2.2.1).

e The oriented matroid far = n is represented by

— the tope graph which is the 1-skeleton of thdimensional hypercube (see
Figure 3.5 for an illustration with = 3), or

— the cocircuit graph which is the 1-skeleton of thelimensional cross poly-
tope, i.e., every vertex is neighbor of every other vertex except one (see Fig-
ure 3.6 for an illustration witlh = 3); the cocircuit graph will be considered
together with a list of coline cycles.

Let us illustrate the use of cocircuit graphs and tope graphs for the example of the single
element extension problem. Consider a pseudosphere arrangement (see Section 0.1) with
cell complexX and corresponding oriented matrald = (E, ). Remember that the
cocircuit graph is the 1-skeleton af (or X), the tope graph is defined by the adjacency
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relation of the topes imM (which corresponds to the obvious adjacency relation of the
d-faces inX). If a new elementf ¢ E is added, i.e., a nedd — 1)-dimensional pseu-
dospheres; is introduced, this defines a new compl&x and a single element extension
M = (EU{f}, F') of M (see also Figure 3.4, the new sphere is dashed).

Figure 3.4: Extension of pseudosphere arrangement

The new element partitions the set of topes into three parts, those which are os the

side of f, those on thet side of f, and those “cut” byf: In the cell complexX these
correspond tal-faces which are on the or + side of f andd-faces which are divided

by St into two newd-faces, respectively. Hence this single element extension defines

a signature on the vertex set of the tope graph where vertices are labeledthyor 0
according to the three mentioned cases (see Figure 3.5). If a signature comes from a single

AB

ABD
Figure 3.5: Localization of tope graph

element extension as discussed above, then it is calledadizationof the tope graph.

We will see that localizations characterize single element extensions up to reorientation
and relabeling of the new element, and we will discuss single element extensions in terms
of localizations of tope graphs (see Chapter 4). Our methods will generate localizations
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of a given tope graphG, and it will be easy to exten@ for every localization to the tope
graph of the corresponding single element extension.

Similarly as for topes, the new elemehtpartitions the set of cocircuits into three parts,

as correspondingly the O-faces in the cell compféxare on the— or + side of Sy or
contained inS; . This partition defines a signature on the vertex set of the cocircuit graph
(see Figure 3.6). Again, if a signature comes from a single element extension then it is

Figure 3.6: Localization of cocircuit graph

called alocalizationof the cocircuit graph. Note that in general the cocircuit graph is not
sufficient to characterize the face lattice &f, and similarly the notion of a localization

is not well-defined without some extra information which is added to the cocircuit graph.
We will see that the set of coline cycles will be perfect when discussing localizations of
cocircuit graphs, as well as for characterizations as for generation of localizations. Local-
izations of a cocircuit graph, given with an M-label up to isomorphism, determine single
element extensions up to isomorphism. Therefore, we can generate all single element ex-
tensions of a given oriented matroid by generating all localizations of its cocircuit graph
by extending the cocircuit graph and its M-label for any given localization.

The following chapters discuss specific algorithmic solutions of the generation problem
and the related problems: in Chapter 4 the methods are based on tope graphs, in Chapter 5
on cocircuit graphs, finally Chapter 6 is based on the results of Chapter 5 and in addition
introduces the representation of chirotopes (see also Section 0.9) which are helpful for
the definition of canonical representations of isomorphism classes. The main results of
Chapters 4 and 5 are also presented in [FFO1].



Make no collection of it; let him show
His skill in the construction.
CYMBELINE (5,5)

Chapter 4

Tope Graphs and Single Element
Extensions

This chapter presents methods which solve the isomorphism class generation problem of
oriented matroids and are based on tope graphs of oriented matroids. For the problem
statements and an overview of the approach see Chapter 3. A strong motivation for the
use of tope graphs of oriented matroids has been the fact that a tope graph characterizes
the isomorphism class of the corresponding oriented matroid (see Corollary 1.4.2) and
that single element extensions of acycloids, a generalization of oriented matroids (see
Section 1.2), can be characterized in terms of tope graphs as discussed in the following.

4.1 Tope Graphs and Isomorphism Classes of Oriented
Matroids

We discuss in this section in more detail the connections between tope graphs and isomor-
phism classes of oriented matroids, before we enter the discussion of generation methods
in the following sections.

Let G be the tope graph of an oriented matraid associated by a bijectiofi : V(G) —

T to the set of topes. By Corollary 1.4.2( is determined byG up to isomorphism,
and clearly also every oriented matroid in(l&Z) hasG as its tope graph. Even more
remarkable, the discussion of algorithneACLOIDORIENTATIONRECONSTRUCTIONIN
Section 1.4 shows that alsbis determined up to isomorphism B i.e., if £ and.L’ are
two associating bijections fro (G) to tope set§™ and7’ of oriented matroids\( and
M, respectively, then there exists an isomorphism betw#eand .M’ which also maps
L(v) to L'(v) for every vertex € V(G).

For the following detailed discussion of isomorphisms of oriented matroids and tope
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graphs the notion of “isomorphism” has to be very clear. By Definition 1.1.2, two ori-
ented matroids are isomorphic if their sets of covectors (or, equivalently, their sets of
topes) coincide under some relabeling and reorientation of the elements, where relabeling
includes the creation and deletion of parallel elements and loops. Then an isomorphism
is a map which relabels (in the same sense as before) and reorients elements. Now, an
automorphism of an oriented matroid is a self-isomorphism, and naturally relabeling here
will not delete or create any elements as the ground set remains the same, hence relabeling
then means permuting the elements in the ground set. Furthermore, it is not interesting to
study automorphism which permute elements within parallel classes or loops, therefore
we restrict the following discussion to simple oriented matroids where all parallel classes
have cardinality one and no loops exist.

We denote the concatenation of map® simply by po (p aftero), and the inverse of a
bijectiont by 1.

4.1.1 Definition (Aut(eM)) Let M = (E, ) be a simple oriented matroid, i.e., there are
no parallel elements # f and no loops. Then Au) is the set of automorphisms of
M, i.e.,¢ = pm with p a reorientation and a permutation orkE belongs to AutM) if
andonly if # = {¢(X) | X € F}.

Note that it is equivalent to define Auk() by topes instead of covectors, i.e., replacing
F by 7 in Definition 4.1.1 leads to the same definition (cf. Proposition 0.7.3).

It is remarkable how closely related automorphisms of tope graphs and oriented matroids
are (for the notion of groups and group isomorphisms see for example [Asc00]):

4.1.2 Proposition Let M be a simple oriented matroid with tope graph G. Thari(G)
andAut(.M) are isomorphic groups.

Proof Let M be a simple oriented matroid with tope graBhand associating bijection
L:V(G) > T.

o ¢g = LgLL € Aut(M) for everyg € Aut(G): By Corollary 1.4.2,7 is deter-
mined byG up to isomorphism, i.e., sinagis a graph automorphism there exist
¢ € Aut(M) such thatLg = L, hencepg = LYL 1 = ¢ € Aut(M).

e gy = L7lpL € Aut(G) for every¢p e Aut(M): For all v, w € V(G)

and everyp € Aut(M), |D(L(v), L(w))| = |D@@L(W), pL(w))|, hence (by
Proposition 1.2.4) all distances @ are preserved undey, := £~ 1¢.L, hence
0p € Aut(G).

e g ¢gand¢ — g, are inverse to each other, which follows by definition. Hence
these maps establish bijections between(@ytand Aui{.M). Furthermore,

dgh = LghL™ = £LgL™rLhL™ = gyon
forall g, h € Aut(G), and
Opy = LY L = LTOLL YL = gy0y
for all ¢, v € Aut(M). [ ]
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Of more practical interest is the question of how two tope graphs can be tested for be-
ing isomorphic. The method which is described in the following is motivated by al-
gorithm ACYCLOIDORIENTATIONRECONSTRUCTION(See Section 1.4). This algorithm
constructs an orientation of the set of topes by choosing awpairof antipodal ver-
tices inG and some shortest path fromto v. For a canonical choice of the ground
set, sayE = {1,...,n} wheren = diam(G), the orientation is uniquely determined
by the sequence of the edges fromw to v. Let G and G’ be tope graphs of oriented
matroids. ForG choose an antipodal pair, v and a shortest patp from v to v. If

G andG’ are isomorphic or, equivalently, & andG’ are defined by oriented matroids
from the same isomorphism class, then the diamet&’ a&fquals the diameter @, i.e.,

n = diam(G) = diam(G’), and there exists a pair of antipodal vertiegésv’ € V(G’)

and a shortest patp’ from v’ to v’ in G’ such that algorithm AYCLOIDORIENTATION-
RecoNsTRuUCTIONfinds the same tope set fro@ usingv, v and p and fromG’ using

v, v andp’. If G andG’ are not isomorphic there are no suc¢hv’ and p’. Hence, it

is sufficient for testing tope graph isomorphisms to check of all shortest pabetween
antipodal vertices’, v’ in G'. This leads to an algorithm which is quite efficient compared
to general graph isomorphism tests.

4.2 Localizations and Tope Graph Extensions

This section discusses the single element extension problem and its relation to tope graphs
in terms of localizations which has been illustrated already in Section 3.4. The present
section discusses properties of localizations, where the following sections present algo-
rithmic solutions to the localization generation problem, the problem to find all localiza-
tions of a given tope graph. As our main concern is the generation of isomorphism classes
of oriented matroids, and since every isomorphism class can be represented by a simple
oriented matroid, we restrict the following discussion to simple oriented matroids.

It will be helpful to introduce additional notation concernisignaturesof graphs, i.e.,
maps of the formv : V(G) — {—, +, 0}. Every signaturer defines a partition on the
vertex setV (G) by VS := {v € V(G) | o(v) = s} for s € {—, +, 0}. In addition we
setV® := V- U V%andVv® := V* U VO Furthermore, leG~, G*, G°, G°, andG®
denote the subgraphs 6finduced byv —, V*, VO, VO, andV®, respectively.

Consider two simple oriented matroidé = (E, ) and M’ = (E’, £’) with tope sets
Tand7’, respectively, such that = M'\ f,i.e., M is asingle element extension f.
Associating the tope grap@ of M to T by £ : V(G) — 7, the above single element
extension defines a signature V(G) — {—, +, 0} on the vertex set o& by

+ if Te = L(v) impliesTs =+ forT € 7/,
o():={ — if Te = L(v)impliesTs =—forT € 7/,
0 otherwise

for v € V(G). We then callo the localization of G w.r.t.L and the single element
extensionM — M. Itis clear that thewr determines the extended tope $éthy

7' =T € {+, —)E" | there existw € V(G) s.t. Te = £(v) ando (v) € {T¢, 0}} .
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For any tope grapls of an oriented matroid, the property of a signatare V(G) —
{—, +, 0} being some localization d& or not is independent from the choice &f, .,
andM’ sinceG determinesM (and.£) up to isomorphism and them’ is determined by
7' as defined above:

4.2.1 Definition (Localization of Tope Graph) Let G be the tope graph of some ori-
ented matroid. A signature : V(G) — {—, +, 0} is calleda localization of Gif there
exist M, £, andM’ such thatr is the localization ofG w.r.t. £ and the single element
extensionM — M.

The tope grapl®’ of the single element extensiow’ is determined bys ando:

4.2.2 Proposition ([FH93]) The tope graph of the single element extensidhdeter-
mined by G and a localization of G is a graph Gwith vertex set

{v_‘veve}u{v+|vev@}
and edge set

{7, vN) v e VO u v, w} | {v,w} € EGD} U {{vh, wh} | {v, w} € E(GP)].

We describe (sloppily) in words how the extended tope gfajhk obtained fronG ando .
Every vertexv in V9 is split into two vertices~ andv™ which are connected by an edge.
We will see further below that there are no edgesitonnectingy ~ andV*. Hence
all edges fromG are kept or doubled (if ifE (G%)), wherev—-vertices (*-vertices) are
connected td/©-vertices ¥ ®-vertices) only, respectively.

Proof of Proposition 4.2.2 Let G be the tope graph of an oriented matraid= (E, ¥)

with associating bijectionf and tope setr, furthermore leto be a localization ofG
defining a single element extensio’ = (E U f, £’). It is not difficult to see the
correctness of the tope graph extension when considering tfié sééxtended topes. For
every topel’ € 7' there is a unique vertexe V(G) such thatf(v) = TL. If o (v) =0

then alsor T’ € 7/, and we spliw into two verticess ™, v € V(G); otherwiseL(v) is

not cut by the new elemerft and we simply mark the corresponding verteXitG’) by

v® according tes = o (v) = T;. The set of edges i’ is determined by the fact that in
simple oriented matroids (what we assumed) two vertices of the tope graph are adjacent
if and only if the corresponding topes disagree in exactly one element (see Lemma 1.2.3).
Hence there is an edge, w~} (or {v", wt}) if and only if the corresponding vertices

w have been adjacent @, furthermore all vertices—, v+ coming from one split vertex

will be adjacent inG’. [

Before we state some important properties of localizations, remember the following fun-
damental facts about tope graphs of oriented matroids (see Section 1.2k hesthe

tope graph of a simple oriented matrold and.L : V(G) — 7 an associating bijection
between the vertex set & and the tope set oM. Then the length of any shortest path
x=u%...,ud = yin Gisd = |D(£L(X), L(y))], and thenD(L(u' 1), L)) =1

fori € {1,...,d} (see Proposition 1.2.4). For every vertex V(G) there is a unique
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vertexv € V(G) (called the antipode of) such thatdg (v, v) = diam(G), and then
L(v) = —L(v) (see Corollary 1.2.5).

A graph theoretical characterization of the localizations of a given tope graph is not
known, but the following properties necessarily hold:

4.2.3 Lemma ([FH93]) Let G be the tope graph of an oriented matroid andV (G) —
{—, +, 0} alocalization of G. Then the following properties are valid:

(L1) o(v) = —o(v) forall v e V(G),
(L2) E(G)N(V~ x V) =0, and

(L3) dge(v, w) = dg(v, w) for all v,w € V©, and cze (v, w) = dg(v, w) for all
v, we VO,

Proof (L1) follows from the symmetry (A2) of tope sets, the definition of antipodes, and
by Proposition 1.2.4 which implies that(v) = —L(v).

For (L2) consider an edgl, w} € E(G) with o(v) = — ando(w) = +. The topes
associated to andw, sayV, W € 7, differ in exactly one sigg € E (we are considering
simple oriented matroids). The corresponding extended tdped’ differ in exactly two
signs, f andg. By the reorientation property (A1);V' € 7' orgV’' = +W' € 77,

where the first would contradiet(v) = — and the second (w) = +.

For (L3) considen, w € V© and the corresponding vertices, w~ € V(G’), where

G’ is the tope graph of the single element extension as discussed above. Remember for
the following that by Proposition 1.2.4 the distance in tope graphs is characterized by the
number of disagreeing elements of the corresponding topes. A shortesgtipathv to w

in G defines a corresponding paphin G’ betweernv™ andw™ which is again a shortest
path by the above characterization. Furthermore, all verticeg’ @orrespond to topes

T € 7/ with T = —, which is also implied by Proposition 1.2.4. Hence the given path
p is contained irG®, which proves thatlge (v, w) = dg (v, w). The analogous claim for
G® follows similarly (or by symmetry). [ |

In the proof of Lemma 4.2.3 we only needed properties of acycloids. In fact, properties
(L1), (L2), and (L3) are characteristic for single element extensions of the tope graphs of
acycloids (see [FH93]), where the extension of the tope graph of acycloids is determined
as stated in Proposition 4.2.2 for localizations.

4.2.4 Definition (Acycloidal Signature) Let G be the tope graph of an oriented matroid.
We call a signaturer of G an acycloidal signature of Gf (L1), (L2), and (L3) are
satisfied.

We strengthen the necessary properties of localizations using the separability of uncut
topes (see Section 1.3):

4.2.5 Theorem Let G be the tope graph of an oriented matroid an@ localization of
G. Then:
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(L4) G~ (and also @) is a connected subgraph of G.

Proof Let M = (E, ¥) be an oriented matroid with tope s&t, tope graphG, and
associating bijectioet : V(G) — 7. LetM’ = (E’, £’) be the single element extension
of M defined by a given localization of G. Denote by7’ the tope set ofi’ and byG’
the tope graph of’. Then there exist§ € E’ such thatM = M’ \ f, and there is a
one-to-one correspondence between the topes in

T ={TeT |Tt=—and+T ¢ 7'}

and the vertices itV ~. By Theorem 1.3.1, the subgraph @f induced by the vertices
associated t6'~ is connected, which implies that the subgr&ph of G induced by the
vertex setV ~ is connected. Analogously (or by symmetr§! is connected. [ |

We introduce two new notions of acycloidal signatures. The weaker notion will be used
in the generation methods discussed in Sections 4.3 and 4.4; the property (L3) is not
considered in the weaker notion since it will not be an invariant in the generation methods.

4.2.6 Definition (Weak and Strong Acycloidal Signature)Let G be the tope graph of
an oriented matroid and a signature of5. We callo a weak acycloidal signature of G
if (L1), (L2), and (L4) are satisfied anal strong acycloidal signature of @ (L1), (L2),
(L3), and (L4) are satisfied.

Because of the examples of Section 1.3 we know that strong acycloidal signatures do not
characterize localizations of tope graphs of oriented matroids, but they are essential for
the algorithmic methods of the following sections. In fact, these generation algorithms
have been the motivation to investigate stronger properties of localizations which lead to
the result of Theorem 1.3.1 and Theorem 4.2.5. On the other hand there are algorithmic
characterizations of localizations of tope graphs:

4.2.7 Proposition Localizations of tope graphs of oriented matroids can be verified in
polynomial time.

Proof Since the extended tope graph can be constructed easily from a tope graph and a
localization as described in Proposition 4.2.2, the claim is a clear consequence of Corol-
lary 1.7.2. ]

In the incremental method for the generation of isomorphism classes of oriented matroids
(see Section 3.3) we described that a single element extension may or may not increase
the rank of the oriented matroid, and it is worth noting that the two cases (rank increases
or stays) can be recognized easily from the localization:

4.2.8 Lemma Let G be the tope graph of an oriented matrgitlando a localization of
G. The rank of a single element extensitth according to G and is the same as the
rank of M unlesso (v) = Ofor all v € V(G), thenrank M) = rank(M) + 1.
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Proof Let G be the tope graph of an oriented matragilwith associating bijectiort :
V(G) — T, ando a localization ofG, defining a single element extensiaf’ of M,
where f is the new element. By Corollary 0.4.9 (i), the rankf is the same as the rank
of M unlessf is a coloop ofmM’, and then then rarfi¢t’) = rank(:M) + 1. We prove that

f is a coloop ofM’ if and only if o (v) = O for allv € V(G). Let D’ denote the set of
cocircuits ofM’. If f is a coloop ofmM’, by composition of the corresponding cocircuits
X, =X e D'with X = {f}and any topd € 7', +T € 7', which shows that (v) = 0
for all v € V(G). On the other hand, & (v) = 0 for allv € V(G) then+T € 7 for all

T € 7'/, and by Proposition 0.7.3 there is a cocircdite D’ with X = {f},i.e., fisa
coloop of M’, what completes the claim. |

4.3 Reverse Search Method for the Generation of Local-
izations

Let G be the tope graph of some oriented matrsid= (E, ¥); the goal of this section is

to find all tope graphs of single element extensiong(iip to graph isomorphism (which

is equivalent to finding all single element extensions up to oriented matroid isomorphism).
Note that our method is working with graphs and not with sets of sign vectors. The main
idea is to generate first all weak acycloidal signatures and then to test these signatures
for being strong acycloidal signatures, finally for being localizations (again in polynomial
time, see Proposition 4.2.7). The tope graphs of the extended oriented matroids (or, more
generally, of the extended acycloids) are easily obtained from the localizations (as deter-
mined in Proposition 4.2.2), and finally graph isomorphism checking (see Section 4.1)
leads to a set of representatives up to isomorphism.

The first step in our method is the generation of all weak acycloidal signatures of a given
tope graphG. Property (L4) is essential for our method as it makes it possible to generate
all weak acycloidal signatures @ without repetition. Note that our algorithms cannot

be restricted to strong acycloidal signatures since property (L3) is not an invariant in the
generation process and hence the generation would become incomplete. For the genera-
tion we modify a reverse search method for the generation of all connected subgraphs of
a given graph [AF96]. Enumerate the vertices of the given tope g@aphan arbitrary

way such thaV (G) = {1, ..., fg}. Remember that every weak acycloidal signature
definesaseV™ := {v € V(G) | o (v) = —}, and the subgrap&~— of G induced by the
vertices inV ~ is connected.

For the reverse search method we define a directed @ragifollows (in the language of
the original reference [AF96], the directed edgeg afefine a local search function): The
vertices ofg are the weak acycloidal signatures@®f there is for every weak acycloidal
signatures with V— # ¢ exactly one directed edde — t) € E(4%), wherer is defined
as follows: LetV ™~ be defined by, and letu € V™ be the smallest vertex such that the
subgraph ofG induced byV~ \ {u} remains connectedi(obviously exists); then let

be the signature with(w) = o (w) for w € V(G) \ {v, v} andt(v) = t(v) = 0 (then

7 is a weak acycloidal signature). There is a unique sink,inamely the signature with
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o(v) = 0forallv € V(G), and every vertex i, is connected to the sink. The search
starts with the sink 0§ and exploits by traversing the edges in reversed direction: By
this all weak acycloidal signatures Gfcan be found without repetition. A description of

the algorithm VWEAKACYCLOIDAL SIGNATURESREVERSESEARCH is given in Pseudo-
Code 4.1. Note that (different from the simple presentation here) it is not necessary in
the reverse search method to store the output list (her®)jrfurthermore the method is
parallelizable.

Input: The tope grapl® of an oriented matroid.
Output: A list W of all weak acycloidal signatures &.

begin WEAKACYCLOIDAL SIGNATURESREVERSESEARCH(G);
determine all antipodes iG;
leto be the signature with (v) = 0 forallv € V(G);
W= {o}; Wnew:={o};
while Wnew # @ do
take anyr € Wnewand remove from Wnew;
for all v € V(G) with t(v) = 0do
if there is nojv, w} € E(G) with o(w) = + orw = v and
there is{v, w} € E(G) with o (w) = — then
o:=1; o) :=—;, o) =4,
determineV ~ fromo;
find the smallesti € V~ such that
the subgraph induced By~ \ {u} is connected;
ifu=vthen W:=WwWuU {o}; Whew:= WhewU {0} endif
endif
endfor
endwhile;
return ‘'w
end WEAKACYCLOIDAL SIGNATURESREVERSESEARCH.

Pseudo-Code 4.1: Algorithm BAKACYCLOIDAL SIGNATURESREVERSESEARCH

4.3.1 Proposition Algorithm WEAKACYCLOIDAL SIGNATURESREVERSESEARCH de-
termines the set of all weak acycloidal signatures of G in time of at mo&t (sz fa—1),
where ¢ is the number of weak acycloidal signatures of G and £ |V(G)| and
fa—1 = [E(G)|.

Proof Note that every weak acycloidal signature®fs added exactly once tWnew, and
for every graphs it can be tested in tim®(|E(G)|) whetherG is connected. [ ]
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4.4 Reduction of Multiple Extension Using Isomorphic
Signatures

In this section we discuss a method for the generation of weak acycloidal localizations
which is similar to the method of the previous section. The difference is that we try to re-
duce multiple generation of isomorphic extensions at an early stage. The key observation
used in the following is:

4.4.1 Lemma Two localizationsr andt of a tope graph G lead to isomorphic extensions
if there is a graph automorphismg Aut(G) such thaiv = g, i.e.,o (v) = t(g(v)) for
all v e V(G).

Proof The claim is a straightforward implication of the fact that the isomorphism class of
an oriented matroid is determined by its tope graph (see Corollary 1.4.2 and the discussion
in Section 4.1). [ |

4.4.2 Definition Two signatures, r : V(G) — {—, +, 0} of a graphG are calledso-
morphicif there exists a graph automorphighe Aut(G) such that = zg.

A direct application of isomorphic signatures is a more efficient isomorphism checking
for a set of extended tope graphs. Instead of testing all extended tope graphs against each
other (e.g., using a method as described at the end of Section 4.1), the localizations (or
weak acycloidal localizations) are tested first for being isomorphic signatures. Practically
all automorphisms o6 can be computed in advance which makes it very fast to reduce a
list of signatures such that no two remaining signatures are isomorphic. Note that testing
for isomorphic signatures is not sufficient for testing for isomorphic extensions: there
are non-isomorphic localizations of some tope graphs which lead to isomorphic single
element extensions.

We present in the following a variant of the algorithmEAK ACYCLOIDAL SIGNATURES-
REVERSESEARCH which generates weak acycloidal signatures only up to isomorphism
(in the sense of Definition 4.4.2), i.e., exactly one representative of each isomorphism
class is returned from the list of all weak acycloidal signatures. This new algorithm
WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISMdoes not use reverse search, but
still can be more efficient than the reverse search method as checking for isomorphic
signatures will avoid the generation of many subtrees in the search tree.

As before, the generation of signatures starts withv (G) — 0, i.e.,V~ = @, and then
augmentd/ ~ by adding single vertices, but now not only with “minimal” vertices as in the
reverse search method. We say that a signatuseanaugmentatiorof a weak acycloidal
signaturer w.r.t.v € V(G) if o is a weak acycloidal signature andw) = t(w) for
allw € V(G) \ {v,v}, o(v) = —, andt(v) = 0. The augmentations are generated
with increasing cardinalityV —| = k, and for everyk only one representative of every
isomorphism class is kept for further augmentations. This leads to an algoritbmx W
ACYCLOIDAL SIGNATURESUPTOISOMORPHISM as described in Pseudo-Code 4.2; the
correctness follows from the following inductive argument:
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4.4.3 Lemma Let G be the tope graph of an oriented matroid. Consider thé&tenf all
weak acycloidal signatures of G witv ~| = k for an integer k> 0. Let W be a set
containing exactly one representative of every isomorphism clagg.obefine'w . , as
the set of all augmentations of signaturesiif, and letW,, , be a set containing exactly
one representative of every isomorphism claswpf,. Then: Wy, ; contains a represen-
tative of every isomorphism class of the 3¢, ; of all weak acycloidal signatures of G
with |V~ =k + 1

Proof Let G, Wk, Wy, Wy 1, Wi, 1, and Wiy be as described above. Consider an ar-
bitrary o € Wk+1. We have to show that there exists a signatifes ‘W, , which is
iIsomorphic too. Take anyr € Wy such thato is an augmentation of (obviouslyt
exists) w.r.t. to some vertexe V(G). Then there exists* € ‘W, such thatr = r*g for
someg € Aut(G). As g is a graph automorphism and all properties of weak acycloidal
signatures are preserved under graph automorphisms, thefesisw, ., which is aug-
mentation oft* w.r.t. g(v), thereforec = o’Qg: o ando’ are isomorphic. Since some
signaturer™ € Wy, , is isomorphic ta’, the claim follows. m

Input: A tope graphG of an oriented matroid.
Output: A list W* of all weak acycloidal signatures & up to isomorphism.

begin WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISMG);
let o be the signature with (v) = 0 for allv € V(G);
wr={o}, W;:={o}; k:=0;
while ‘W # ¢ do
Wy,1 := the set of all augmentations of signaturesj;
Wi,1 = a set of representatives of the isomorphism classé$,0f;;
W= WEU Wi
k:=k+1
endwhile;
return ‘w*
end WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM

Pseudo-Code 4.2: Algorithm BWAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM

As stated above, we do not use reverse search for algoritEmKQACYCLOIDAL SIGNA-
TURESUPTOISOMORPHISM and the reason may be seen when considering the proof of

Lemma 4.4.3: In a reverse search method the augmenting vertices have to satisfy a min-

imal property, so in the inductive argument betlandg(v) have to be minimal, which
is not true in general. Still it may be possible thaEX ACYCLOIDAL SIGNATURESUP-

TolsomMORPHISMcan be combined with the reverse search method (e.g., using a special
choice for the representatives of isomorphism classes).
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4.5 Reduction of Multiple Extension Using Maximal Lo-
calizations

The two previous sections presented two algorithms for the generation of weak acy-
cloidal localizations (up to isomorphism), namelyfAK ACYCLOIDAL SIGNATURESRE-
VERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM This sec-

tion discusses further improvements, mainly considering the multiple extension reduction
problem (see Section 3.3) for which we present a simple heuristic which is quite efficient
in practice.

In the incremental method described in Chapter 3 every oriented matfoid (E, %)

is obtained as a single element extension of some deletion minor. Usddilys several

(up to| E|) non-isomorphic deletion minors, but only one is needed to gengfata the
following we restrict our method to extensions of deletion minors with a minimal number
of topes; this will eliminate many but not all multiplicities in the method. Furthermore—
we will describe this in the following—it can be checked from tope graphs and signatures
whether the extension comes from a minor with a minimal number of topes, and this
criterion will reduce the amount of enumeration of weak acycloidal signatures.

Consider an oriented matroid’ and a deletion minam’\ f, which defines a localization
o of the tope grapl& of M" \ f. The number of topes oft’ \ f is minimal among all
deletion minors of’ if and only if the difference of the numbers of topesmf \ f and
M’ is maximal:

4.5.1 Definition (Maximal Localization) Let G be the tope graph of an oriented matroid
M = (E, F) ando a weak acycloidal signature @ which defines a single element
extension7’ (defined as in Section 4.2 for localizations) with tope gr&ghand new
elementf. We callo a maximal localization of Gf |7/| — |7\ f| > |T/| — |7\ €| for

all e € E or, equivalently, iff7" \ f| < |7\ e foralle € E. If 7' is the set of topes of
an oriented matroidu’ then the set of topes oft’ \ eis7’' \ eforee EU f.

For the following characterization of maximal localizations remember the notiedgd
classeqsee Definition 1.2.7 and Lemma 1.2.8): L@&tbe the tope graph of an oriented
matroid M. The relation~ defined on the set of edgds(G) by {v, w} ~ {v/, w'} if

ds (v, v) < dg(v/, w) anddg (w’, w) < dg(w’, v) is an equivalence relation and leads to
a partition ofE(G) into edge classe&® which correspond to the elements in the ground
set of M.

4.5.2 Lemma Let G be the tope graph of an oriented matroid = (E, ¥) ando a
localization of G; as usual set%:= {v € V(G) | o(v) = 0}. Theno is a maximal
localization of G if and only if for every edge clas§ E E(G)

(M) VO > [E®|+]E®N (VO x VO,

Proof LetG, M = (E, ¥),0,7’, G/, andf be as in the definition of maximal localiza-
tions. Consider the differencé€s’| — |7\ €| of number of topes foe € EU f. Fore = f
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this difference obviously i$vV°|. Fore # f the difference equals the number of edges in
the corresponding edge clads®)’ of the extended tope graf or, equivalently, half of
the number of tope$’ € 7’ for which<T’ € 7. This number can be computed from
half of the number of tope¥ € 7'\ f for which<T € 7\ f, which is|E®|, where
every such topd counts twice ifT andsT are cut byf: the number of topes which
count twice is|E€ N (VO x V9)|. Hence|T'| — |7/ \ e = |E®| + |E€ N (VO x V)| for

e € E, which proves the claim. |

If (M) is not valid for some weak acycloidal signaturethen (M) is also violated for every
augmentation o&: An augmentation will decreas®®| by 2 and|E€ N (V° x V9)| by

at most 2 (note that edges incident to a common vertex belong to different edge classes).
Therefore signatures which violate (M) can be discarded in the generation algorithms, and

by this the amount of enumeration is reduced considerably.

We conclude this section with a remark on how the algorithms presented above may be
slightly improved when considering strong acycloidal signatures instead of weak acy-

cloidal signatures. We modify the two algorithmsAK ACYCLOIDAL SIGNATURESRE-
VERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM by adding
a simple test: When for a signature there exist vertices, w € V~ such that
dge (v, w) > dg(v, w), then neitheto nor any augmentations af will satisfy (L3),

i.e., we will discard such signatures in the algorithms (for the augmentations observe that

dg (v, w) does not change antge (v, w) will not decrease since®© becomes smaller as
V™ becomes larger).



The wheel is come full circle
KING LEAR (5,3)

Chapter 5

Cocircuit Graphs and Single Element
Extensions

This chapter presents methods based on cocircuit graphs of oriented matroids which solve
the single element extension problem of oriented matroids, discussed in the context of the
iIsomorphism class generation problem of oriented matroids. For the problem statements
and an overview of the approach see Chapter 3. In contrast to tope graphs, cocircuit
graphs do not characterize the isomorphism classes of oriented matroids. However, as a
result of Las Vergnas [LV78b], the single element extensions of an oriented matroid can
be characterized by the cocircuit graph together with a corresponding list of coline cycles.
This enables us to design efficient algorithmic solutions for the generation problem of
oriented matroids.

5.1 Cocircuit Graphs and Isomorphism Classes of Ori-
ented Matroids

We discuss in this section the connections between cocircuit graphs and isomorphism
classes of oriented matroids, similar as in Section 4.1 for tope graphs.

Let G be the cocircuit graph of an oriented matrotd and.L : V(G) — D a bijection

which associates vertices with cocircuits. In the language of graph labels (see Section 2.1)
we call.£ an OM-label ofG andL : V(G) — # defined byL (v) := L£(v)%forv € V(G)

the M-label induced by’; remember tha# denotes the set of hyperplanes (here, of the
underlying matroidm). By Corollary 2.2.8,.M is determined byG and the M-label

L up to reorientation, and clearly also every oriented matroid in the reorientation class
OC(M) hasG as its cocircuit graph with M-label. Furthermore, the discussion of
algorithm OMLABELFROMML ABEL (see Theorem 2.2.7) shows thétis determined

up to reorientation bys andL, i.e., if £ and.L” are two associating bijections frox(G)
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to sets of cocircuit® andD’ of oriented matroidsu and.M’, respectively, wheref and
L induce the same M-labél, then there exists a reorientatiprsuch thatf = p.L'. As
before, we denote the concatenation of maps by po (p aftero), and the inverse of a
bijectiont by 1.

Instead of reorientation classes of oriented matroids, which we have considered above,
let us have a closer look at isomorphism classes. We may consider for a moment simple
oriented matroids only, i.e., we assume that there are no parallel elemeats and

no loops, by this excluding trivial isomorphisms as we did in the discussion concerning
tope graphs (see Section 4.1). As introduced in Definition 4.1.1, letMube the set

of automorphisms of a simple oriented matroil = (E, ), i.e.,¢ = pm with p a
reorientation andr a permutation ork belongs to AutM) if £ = {¢(X) | X € F}.

Similar to tope graphs, there is a strong relation betwee.#&utand certain of the graph
automorphisms of the cocircuit graph @f as we discuss in the following (we refer to
[Asc00] for the notions of groups and group isomorphisms).

5.1.1 Definition (Cocircuit Graph Automorphism, Aut(G, L)) Let G be a cocircuit
graph of an oriented matroid with M-lab&l. An automorphisng € Aut(G) is called
a cocircuit graph automorphism of G andiLthere exists a permutation of the ground
setE (given as the union of all vertex labels definedlbysuch thatLg = 7 L. The set
of all cocircuit graph automorphisms &f andL is denoted by AUG, L).

5.1.2 Proposition Let M be a simple oriented matroid with cocircuit graph G and L the
M-label of G induced by an associating bijectigh: V(G) — D, whereD is the set of
cocircuits of M. ThenAut(G, L) and Aut(.M) are isomorphic groups.

Proof Let M be a simple oriented matroid with cocircuit gra@hand associating bijec-
tionL : V(G) — D. LetL be the M-label ofG induced by.L.

o ¢g = LgL71 e Aut(M) for everyg e Aut(G, L): Sinceg is a cocircuit graph
automorphism ofG and L there exist a permutatiom of the ground seE such
thatLg = nL. By Theorem 2.2.7M is determined byG and the M-labelL
up to reorientation, i.e., there exists a reorientajposuch thatfg = pr L. For
¢ = pr € AUL(M), L9 = ¢L, hencepg = LYL L = ¢ € Aut(M).

e gy = L71pL € Aut(G, L) for everygp e Aut(M): By definition of cocircuit
graphs, which is independent from oriented matroid isomorphigmsg, Aut(G).
Furthermorel.gy, = 7L for ¢ = pm.

e g~ ¢gande — gy are inverse to each other, which follows by definition. Hence
these maps establish bijections between(&utl ) and Aut.M). Furthermore

dgh = LghL™ = LgLehL™ = pgon
forall g, h € Aut(G, L), and
Uy = LTIPYL = LTHPLL YL = gy0y

for all ¢, v € Aut(M). [ ]
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Open Problem: Aut(G) = Aut(G, L) for all cocircuit graphs G and for all M-labels L
of G?

If Aut(G) = Aut(G, L) for all cocircuit graph<s and all M-labelsL of G then Proposi-

tion 4.1.2 implies that for every oriented matroid the automorphism groups of the cocircuit
graph and of the tope graph are isomorphic. Furthermore, an answer to the above open
problem would also solve Open Problem 1 in Section 2.6.

The isomorphism class of an oriented matroid is represented by its M-labeled cocircuit
graph, where the M-label is considered up to isomorphism. This representation can be
used to test rather efficiently whether two oriented matroids are isomorphic (this is the
isomorphism checking problem of oriented matroids, see Section 3.3) as we discuss in
the following. LetG andG’ be cocircuit graphs of oriented matroids with M-labkland

L’, respectively. I{G andG’ are defined by oriented matroids from the same isomorphism
class therG andG’ are isomorphic and there exists a bijectpnV (G) — V(G’) such
thatL'g = ¢L for some isomorphisng on the ground sets; we call suclya cocircuit

graph isomorphism from G t0'G

In the following algorithm,coline cyclesplay a major role. Coline cycles have been
introduced in Section 2.2 (Definition 2.2.4): Lét = (E, ¥') be an oriented matroid with
rank(:M) > 2 andG the cocircuit graph of( with associating bijectioeC : V(G) — D.
For an edgév, w} € E(G) theseU := .£(v)°NL(w)? C E is a coline of the underlying
matroid .M, which is calledthe coline of{v, w}. By Lemma 2.2.3, the edges E(G) of
colineU form a cyclec(U) in G which we callthe coline cycle of U

The algorithmic idea is to find a cocircuit graph isomorphgfrom G to G’ by enumer-

ation of a number of bijection¥ (G) — V(G’), using a backtracking technique on the

set of vertices 06. Start with some vertex € V(G). For allv’ € V(G) try out whether

g(v) = v’ can be extended to a cocircuit graph isomorphisfrom G to G’. For this fix

an arbitrary neighbow of v. For all neighborsy’ of v’ in G’ try out whetheg(w) = w’

can be extended to cocircuit graph isomorphgfrom G to G’. For this observe thdt,

v, andw determine a coline cycle i@, and this has to correspond to the coline cycle de-
termined byL’, v/, andw’ in G’: the choice ofy(v) andg(w) definesg(x) for all vertices

in the coline cycle. If a second neighbwof v is chosen, any choice gf(u) in G’ fixes

a second coline cycle. Furthermore, there may be other coline cycles for which some of
the vertices have been considered already, and recursively this determines more and more
vertices: only a few vertices suffice and the bijectgpis determined. It is then trivial

to test whether there exists an isomorphigron the ground set such thatg = ¢L.

Of course the enumeration process can be enhanced by adding some simple tests such as
whether the degree of verticasand g(x) is equal, whether coline cycles {B and G’

have same length if necessary, or whether there existisomorphifmmgartially defined

g. Whenever such a test fails the current choice is skipped in the enumeration.

The efficiency of the above isomorphism test depends on the rank of the corresponding
oriented matroids: the higher the rank the slower the algorithm. The reason for this ob-
servation lies in the connectivity of coline cycles, which was studied in Section 2.3 for
uniform oriented matroids. For example, in the cocircuit graph of an oriented matroid
of rank 3 every coline cycle intersects every other, and it suffices in the above algorithm
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to consider three vertices @nd two neighbors), independent from the cardinality of the
ground set. In higher rank we have to consider a correspondingly higher number of ver-
tices.

5.2 Localizations and Cocircuit Graph Extensions

In this section we consider cocircuit graphs of oriented matroids and their relation to single
element extensions of oriented matroids. We have introduced in Section 3.4 localizations
of cocircuit graphs which represent single element extensions; we discuss this here in
more detalil.

Consider two oriented matroidé( = (E, ) and M’ = (E’, ') with cocircuit sets

D and D', respectively, wheree’ = E U {f} for f ¢ E. Furthermore assume that

M =M\ f,ie., M isasingle element extension #t. We assume for the following

that f is not a coloop ofM(": extensions by coloops will not be represented by localizations

of cocircuit graphs, hence all single element extensions considered in the following do not
increase the rank of the oriented matroid (note that by Lemma 3.3.2 these extensions are
not necessary for a complete generation of oriented matroids).

5.2.1 Lemma For every cocircuit Xe D there exists a unique cocircuit’>e D’ such
that X = X'\ f.

Proof Let be X € D. By definition of the deletion minor there exists soxe e F’
such thatX = X'\ f. Sincef is not a coloopr := rank(:M) = rank(.M"). By Corol-
lary 0.4.9 (iii), ranky, (X) = ranky(X") or ranky (X) = ranky(X") + 1, where the latter
would imply X’ = 0, which is not possible because ¥f = X'\ f # 0. Therefore,
X" € D’. For the proof of the uniqueness considre D’ with X = Y’ \ f. Then
at least one oX’ € Y’ or Y’ € X’ is valid, and by cocircuit axiom (C2) and # 0,
X =Y. [

Associating the cocircuit grap& of M to D by £ : V(G) — D, the above single
element extension defines a signatare V(G) — {—, 4, 0} on the vertex set o& by
o(v) := X} forv € V(G), whereX’ € D' is uniquely determined bXg = £L(v) € D
(see Lemma 5.2.1 above):

5.2.2 Definition (Localization of Cocircuit Graph) Let M = (E, ¥) be an oriented
matroid with cocircuit graphG and associating bijectioe : V(G) — D. Let
M = (EU f,F') be a single element extension #f. This defines a signature
o : V(G - {—,+0 byo) := X} forv e V(G), whereX" € D’ such that
Xg = £L(v). We callo the localization of G w.r.t.L and the single element extension
M —> M.

The set of cocircuits of the single element extension is determined by a localization as
follows:
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5.2.3 Lemma ([LV78b]) Let G be the cocircuit graph of an oriented matroid associ-
ated to the set of cocircuit® by £ : V(G) — D. A localizationo of G w.r.t..£ and a
single element extensio — M’ determines the extended cocircuit g&tas the set of
all sign vectors X e {—, +, 0}EYT for which

e X'\ f =L(v)and X; = o(v) for some vertex € V(G), or

e X'\ f = £L() o Lw) and X; = 0 for some edggv, w} € E(G) with
o), c(w)} ={—, +},

where f¢ E is a new element.

Proof By Lemma 5.2.1 and the definition of the localizatioyfor everyv € V (G) there
is a uniqueX’ € D’ such thatX’ \ f = £L(v) and X = o(v). The claim states that
the remaining cocircuits ieD’ are the sign vectorX’ on E U f of the form X'\ f =
L(v) o L(w) and X; = 0 for some edggv, w} € E(G) with {o(v), o(w)} = {—, +}.
Consider anyX’ € D’ and setX = X'\ f € F. By assumptionf is not a coloop of
M’'. Hence Corollary 0.4.9 (iii) implies that rapk X) = ranky(X’) or ranky (X) =
ranky(X’) + 1. In the first caseX € D, which was discussed above. In the latter
case spap, (X% # X'° (see Corollary 0.4.9 (iii)), s is a coline inM and.M’, and
b= 0. Furthermore, rank(X) = 2 implies that there is an edde, w} € E(G)
such thatX = £L£(v) o L(w). LetV', W' € D’ be determined by’ \ f = £L(v) and
W'\ f = £L(w), thenV{ = o(v) andW; = o(w). ThenX = L(v) o L(w) implies
V/\ f € X'\ fandW'\ f € X'\ f, so (C2) is satisfied only ¥/; # 0 andW; # 0.
If Vi = —Wj; then{o (v), o(w)} = {—, +}, what we claimed. We show th&t; = W;
leads to a contradiction. Assunw§ = W} # 0. Apply cocircuit elimination (C3) to
V', -W" e O, and f: there existsZ’ € D’ such thatZ’; = 0 andZé e [V, —Wé, 0}
forallge EU f. HencezZ' € X/, and by (C2)Z2' = X' or Z’ = —X'. ButV’ # W’ and
V' # —W'implies that there ig € W'\ V/, for whichZy # X{,, and there ig € V/\W/,
for which Z;, # —X{,. This proves tha¥{ = W} # 0 is not possible. [

The rank of the extended oriented matraifl is the same as the rank df (extensions
of coloops are excluded by assumption) (fv) = O for allv € V(G) then f is a loop of
M. If M is a simple oriented matroid, thett’ is also simple unless

e o(v)=0forallve V(G) or
e there exist® € E such that (v) = L(v)eforallv e V(G) or
e there exist® € E such that (v) = —L(v)eforallv € V(G).
The cocircuit graph of the single element extensighis determined byD’, as any set
of cocircuits determines the corresponding cocircuit graph. We cannot determine the

cocircuit graphG’ of the single element extension fraBand a localizatiow, as we do
not know between which vertices & the edges corresponding to the new colines have to
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be placed. So we will first compute the single element extension (i.e., the set of cocircuits
D’) and then the cocircuit graph’. We briefly describe an algorithm which computes the
cocircuit graphG’ for a given set of cocircuit®’ < {—, +, 0} in O(( f(;)?’n’) elementary
arithmetic steps as follows, wherg§ = |D’| andn’ = |E’| (the same algorithms has
already been described in the proof of Theorem 2.5.1): The vertex &tieh setv (G')
associated by a bijectiafi’ to D’. For every vertex € V(G’) consider the set

S() := {(L'() o L/ (w))° S E' |w € V(G) \ v such thaD (L (v), £/ (w)) = ¥},

then{v, w} € V(G') is an edge of5’ if and only if (£ (v) o £/ (w))° is maximal inS(v).

The vertex seV (G) of a cocircuit grapltG is partitioned by a signature intoV—, V™,
VO, whereVs := {v € V(G) | o(v) = s} for s € {—, +, 0}; let G~ andG™ denote the
subgraphs ofs induced byV~ andV ™, respectively (we have introduced this notation
already for tope graphs in Section 4.2).

For the following discussion the notion of coline cycles becomes important again (coline
cycles have been introduced in Section 2.2, see Definition 2.2.4; we have used coline
cycles already in the previous section).

The following characterization of localizations of cocircuit graphs will be highly impor-
tant for the design of efficient methods for the generation of oriented matroids.

5.2.4 Theorem (Las Vergnas [LV78b])Let G be the cocircuit graph of an oriented
matroid M with rank(M) > 2, given with the set of all coline cycles of G, and let
o : V(G) — {—, +, 0} be a signature of G. Thes is a localization of G w.r.t.L and
some single element extensiéh — M’ if and only if for every coline cycle c in G one
of the following is valid:

() o(v) = Ofor every vertex in c.

(I There are two verticesandv’ in ¢ witho (v) = o (v') = 0 such thatv andv’ divide
c into two paths ¢ and ¢" of the same length which connecandv’, and, for every
vertexw in c¢ different fronw andv’, o (w) = —if wisinc” ando (w) =+ if wis
inct.

(1) Same agll) except that (v) = — ando (V') = +.

We will refer to I, Il, 11l as the three possiblypesof a coline cycle (see Figure 5.1 for an
illustration).
03 0 + Q + e _
0 0 + _ + _
0 0 + _ + _
0 0 + _ + _
0 0 +
Type | Type Type

Figure 5.1: The three possible types of a coline cycle
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The following proof follows [LV78Db]; our proof also explicitly shows that the zero sup-
ports of the extended sign vectors form a set of hyperplanes of a matroid, which is a result
Crapo [Cra65].

Proof of Theorem 5.2.4 From the discussion of oriented matroids of rank 2 (see Corol-
lary 1.4.4 and Lemma 2.2.1) it is clear that on every coline cycle the induced signature
has to satisfy one of I, I, and Ill. We show in the following that this is sufficient, i.e.,
that then the extended set of sign vectdrssatisfies the (modular) cocircuit axioms (see
Proposition 0.6.9).

Assume that is a signature which satisfies I, II, or Il for every coline cycle. We define
a setD’ by o and.L as in Lemma 5.2.3, wheré ¢ E is the new element. Ldt be the
M-label induced byt, i.e.,L(v) := £(v)° for all verticesv € V(G). We first prove that
the set of zero supports @’ is a set of hyperplane®’ of a matroidM’. By definition of

D’ and because of the assumptions on the type of every coline ¢ytis,determined as
the set of set$l’ € E U f for which

e H =L U f forve VY,
e H =L(v)forveV(G)\ VY or
e H = (L(v)NL(w))U f for an edggv, w} € E(G) with {o (v), o (w)} = {—, +},

For (H1) considerX’, Y € #' with X" € Y. SetX := X'\ f andY := Y"\ f.
ObviouslyX € Y. If X & Y thenX = L(v) N L(w) & L(u) =Y for some vertices
v, w,U € V(G) where X is a coline inM. Hencef € X’ C Y’. By assumption
{o(v),oc(w)} = {—, +}, i.e., the coline cycle oK has type lll, but since the vertax
is on the coline cycle oK, f ¢ Y’, a contradiction. IfX = Y then eitherX = Y is a
coline and hencd € X' =Y’,or X =Y = L(v) for some vertex € V(G), hence by
symmetry (C2) of£ and the symmetry of, X’ = Y’. For (H2) consideiX’,Y" € #’
with X’ £ Y ande € (EU f)\ (X’UY’). We have to show that there exigtsc #' such
thatR .= (X'NnY)uecC Z. SetX:= X'\ f,Y:=Y'\ f,andR:=R\ f. Ife# f
thenR = (XNY)Ue, otherwiseR = XNY. If span, (R) is not a hyperplane it then
consider any colin& € M such thatR € U. By assumption on the type of the coline
cycle ofU and by the definition ofD’ there exist&Z’ € #’ suchthat) € Z'andf € Z/,
henceR' € Z'. If span,(R) is a hyperplane i then spap,(XNY) = XNYisa
coline inM (note thatX” # Y’ and (H1) implyX # Y), ande # f. By definition there
existsZ’ € #' such that spap(R) € Z’,soR C Z'. If f € X" N Y’ then by assumption
the coline cycle ofX N'Y has type I, hence alsb € Z'.

It is not difficult to see that (CO) to (C2) are valid by definition and by the symmetry
of o w.r.t. to antipodes irG. It remains to check modular cocircuit elimination (03
Let X', Y € D’ be modular in the matroit!l’, i.e.,U’ := X Y"is a coline inM’.
Lete € D(X’,Y’). We have to show that there exist$ € D’ such thatZ, = 0 and
Zé € {Xé,Yé,O} forallg e EU f. Let X,Y € ¥ be defined byX := X'\ f and
Y: =Y\ f,andset) :=U"\ f.

e Assume spag (U) = U’. This implies rank(U) = ranky (U’) (see Corol-
lary 0.4.8 (iii)), hencel is a coline inM. Note thatU’ U e spans a hyperplane



124 CoCIRCUIT GRAPHS AND SINGLE ELEMENT EXTENSIONS

in M’, hence there is a sign vectdf € £’ such that)'Ue C z"° and by (C2) this

Z' is determined up to negative. Set= Z’\ f, thenU < Z°. Consider the coline
cyclec(U) of U in the cocircuit graptG of M. Denote byx, vy, z, Z the vertices

or edges irc(U) that correspond tX, Y, Z, —Z. The contraction ofM to U is an
oriented matroid of rank 2 whose cocircuit graph corresponds to the subgraph of
c(U) in G. From the characterizations of rank 2 oriented matroids (Corollary 1.4.4)
it follows that z or Z is on the shorter path from to y (note thatX # —Y be-
cause of the modularity ok’ andY’), and in the latter case we replac& by Z.
Sinceo observes one of the three possible types@), in any caseZ, = 0 and

qu € {X/,Yé,O}foraIIg c EUf.

e Assume spaf (U) # U’. Thenf e U’,i.e,, X = Y; = 0andf # e and by
(C2) for X', Y’ € D’ follows that there exisy € Y \ X = X%\ Y°. By the strong
hyperplane exchange axiom applied 6P, Y’°, e, andg, there exists a hyperplane
in M” which containdJ’ ande but notg; because of the modularity of" andY’
this hyperplane is the span Bf U ein M’. Hence there existd’ € D’ such that
U'uec z°%and Zy # 0. Because of (C2)Z’ is determined up to negative, and

we chooseZ’ such thaZy = Y. Similar as forg, there exist € X\ Y = Y%\ X°

such thatZ; # 0. If Z/ e {X[,Y/,0} for alli € E, we are done (note that

Xt =Yt = Z; = 0). Otherwise let € E be such thaZ ¢ {X{,Y/,0}. As
span, (U) # U’ implies ranky (U) = ranky (U") — 1, the contraction minor
M’/U is a matroid of rank 3. Furthermore, by the choiceeof), h, andi, also its
deletion minoM := (M’/U)\ (E\{e, f,g,h,i})isofrank 3. The orientatio®’
induces an orientation &f. The analysis of all possible orientations of matroids of
rank 3 on ground sets of 5 elements shows that no case supports all assunmptions.

It is not difficult to see that a single element extension of a uniform oriented matroid is
again uniform if and only if the corresponding localization of the cocircuit graph satisfies
VO = ¢, i.e., every coline cycle has type III.

We conclude this section with the following lemma which will be important for some of
the algorithms in the next section:

5.2.5 Lemma Let G be the cocircuit graph of some oriented matroid and leV (G) —
{—, +, 0} be a localization of G w.r.t. a given associating bijectignand some single
element extension. ThentGand also G) is a connected subgraph of G.

For the proof of the lemma we need Proposition 2.2.5 which states that for any ekement
the subgraph induced by the vertiaefor which £ (v)e = + is connected.

Proof of Lemma 5.2.5 Let G be the cocircuit graph of an oriented matrail= (E, ¥)
with associating bijectiog : V(G) — D. Leto : V(G) — {—, +, 0} be a localization
of G w.r.t. £ and some single element extension. The localizatiamd.L define a single
element extensiom’ = (E U f, £’) with new elementf as stated in Lemma 5.2.3.
Consider the cocircuit grap®’ of M’ with associating bijectio’’ : V(G') — D’. Let
V]fr denote the set of vertices with’(v)f = +. For any two vertices, w € VT =
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{v € V(G) | 0(v) = +} there are uniquely determined vertic€sw’ € V(G’) such
thatL' (V) \ f = L(v) andL' (w') \ f = L(w), and thent'(v); = L'(w)i = +,
i.e.,v’,w’ e V{. By Proposition 2.2.5, the subgraph®f induced byV" is connected.
Hence there exists a path= uy, ..., u, = w’ in G’ connecting’ andw’ with u/ € V-
fori € {0, ..., k}. Forevery thereis a uniquej € V(G) suchthatf(uj) = L£'(u)\ f,
and theno (uj) = +; furthermore{u;_,,ui} € E(G’) implies{ui_1,u;i} € E(G) for

i €{1,...,k}: v, ware connected withit ™, henceG* is connected. The connectedness
of G~ follows by symmetry. [ |

5.2.6 Definition (Weak Localization) Let G be the cocircuit graph of an oriented ma-
troid M with associating bijectior : V(G) — D. For every vertex € V(G) we call
the vertexv determined byL (v) = —L(v) the antipode ob. We call a signature of G

a weak localization of Gf o(v) = —o (v) for every vertexw € V(G) andG™ (and by
symmetry alsdG ™) is connected.

It is clear from Theorem 5.2.4 and Lemma 5.2.5 that every localization of a cocircuit
graph is also a weak localization, but not every weak localization is a localization (this
fails already for rank 2 and a ground set of 3 elements).

5.3 Two Methods for the Generation of Localizations

This section introduces two methods for the generation of localizations of cocircuit
graphs. The methods, which are similar to those presented for tope graphs in Sections 4.3
and 4.4, can be used as part of an incremental method as described in Section 3.3.

Note that for the generation of localizations of a cocircuit graph we need more than the
cocircuit graph, namely also an associating bijection. This has not been the case in the
methods using tope graphs.

The main idea of the following two methods is to generate first all weak localizations and
then to test these signatures for being localizations (e.g., using the characterization of The-
orem 5.2.4). As for the generation of weak acycloidal signatures in tope graphs the prop-
erty that the subgraprG™ andG~ are connected graphs is essential. This leads to algo-
rithms WEAKLOCALIZATIONSREVERSESEARCH and WEAKLOCALIZATIONSUPTO-
IsoMORPHISMWhich are similar to the algorithms PAKACYCLOIDAL SIGNATURES-
REVERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM which

are discussed in Sections 4.3 and 4.4. Due to the similarity, we omit a detailed description.

We consider some improvements of the two methods, similar to those presented in Sec-
tion 4.5. Let.M be an oriented matroid with cocircuit gragghand associating bijection
L, ando a localization ofG w.r.t. .£ and a single element extensigh — M'.

We callo a maximal localization of G w.r.t£ if the differencg D’| — |D| of the number
of cocircuits inM’ and.M is maximal among the differences betwé&ri| and the number
of cocircuits of any deletion minam’ \ e. Maximal localizations are characterized by
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G and L (of course, sincel gives full information aboutM), but we cannot use non-
maximality of localizations as a stopping criterion (as in the case of tope graphs). In fact,
practically we only use maximal localizations after the generation of weak localizations
and after omitting signatures which are not localizations in order to reduce the amount of
iIsomorphism checking.

Another improving step may be to test for every signature in the algorithraarA/
LOCALIZATIONSREVERSESEARCH and WEAKLOCALIZATIONSUPTOISOMORPHISM
whether the signature violates the coline types in a way such that also all augmentations
will be violating (as introduced for tope graphs, an augmentation of a signatisa
signaturer such thatr (v) = o(v) for all o(v) # 0). For an example see Figure 5.2;

any augmentation does not change the nonzero signs which already violate all of the three
coline types |, Il, and IlI.

Figure 5.2: Infeasable assignment of a coline cycle

The computational experience shows that the methods introduced in this section as well
as the analogous methods for tope graphs work for smaller instances satisfactory and lead
to the same results, but the larger the instances the larger is the difference between the
number of weak localizations and localizations, which then makes the methods rather in-
efficient. Cocircuit graphs are smaller than tope graphs (cf. Corollary 1.5.2), which makes
the cocircuit graph algorithms running somewhat faster. The fact that the algorithms do
not use a good characterization of localizations may explain why they are rather slow, at
least compared to the method presented in the following section.

5.4 Backtracking Method for the Generation of Localiza-
tions

The characterization of localizations of cocircuit graphs as formulated in Theorem 5.2.4
offers a more structured approach to localizations than it was possible for tope graphs or
used in the methods of the previous section. We may try to assign to every coline cycle
in a given cocircuit graph a sign pattern of type I, Il, or Ill in a consistent way. We will
do this using a simple backtracking method, which leads to a third algorithanLizA -
TIONSPATTERNBACKTRACK as discussed in the following which is much more efficient

in practice than the methods presented so far.

Let D be a set of cocircuits of an oriented matroil = (E, ). As described in Sec-
tion 5.2, we can compute iﬁ)(f(f’n) elementary arithmetic steps its cocircuit graph
and an associating bijectiafi : V(G) — D, wheren := |E| and fo = |D| = V(G).
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Then compute the sé¢y, . . ., cs} of all coline cycles ofG, where every cycle; is repre-
sented as a list of verticds, . .., Uimi} which is ordered such thatz'j_l, v'j} is an edge
forall j € {2,..., m;}, wherem; is the length of coline cycle . With f1 = |E(G)|, this
computation costs at mo§i( fo f1n), i.e., not more thar@(f(f’n) (note that) " m; = f;
ands < f1 < foz). For a signature of G let o; denote the restriction af to the vertex
set of cyclec;. Theorem 5.2.4 implies that has one of three types, more precisely one
of 2m; + 1 patterns which we encode in a numbeg < {0, ..., 2m;} as follows (set

i RN
vmi-i—l T vl)'

pi=0 oj is of type |

pi=2jforje{l..., m) oi is of type Il ando (v}) = 0,0 (v} ;) = +

p=2j—1forje{l, ...,m} | o is of type lll anda(vij) = —,a(vin) =+

Our algorithm will set allp; (and by thiso;) fori € {1, ..., s} in a consistent way, i.e.,
such that for every vertex € V(G) the sign ofo;j (v) is the same for all coline cycles
which contairw. Assume that for a set of indicésC {1, ..., s} we have chosep; for all

i € | (in a consistent way), and it remains to chog@sédor i ¢ I. Obviously, the patterns
pi fori € | restrict the possibilities for the remaining choices. Considgr : For some

of the vertices in the coline cyclg the signs may be determined by previously fixed
patterns of coline cycles which intersext and therefore only some (or possibly none)
of the 2n; + 1 patterns remain. We call these directly computable restrictioméirst-
order consequences implied byfpri € I. These first-order consequences will usually
determine the signs of vertices on cyatewithi ¢ | which were not set before, and these
new signs imply further restrictions for thg fori ¢ |, and so on: The computation of
implied restrictions can be continued recursively and will finally lead to what wetgall
second-order consequences implied byfgg i € | (second-order consequences have

been introduced by Bokowski, see [BGdOO0OQ]). Although the second-order consequences

reduce the amount of enumeration, we simplify the following discussion of our algorithm

by restricting to first-order consequences; our method will be such that the improvement

by second-order consequences is not of importance in practice.

We describe in the following an algorithmdCALIZATIONSPATTERNBACKTRACK

which serves as a concrete variant of our method. This algorithm is quite simple and rather
efficient, but still it may be improved (e.g., using second-order consequences or more so-

phisticated data structures). Let us assume that all coline cgictdghe given cocircuit

graphG have been computed as described above. The goal is to enumerate all localiza-

tions of G by enumerating all consistent choicgs, ..., ps) with p; € {0, ..., 2m;}.
Considerl € {1,...,s} as a set of indices for which the correspondmghave been
fixed (in the beginning = ). The first-order consequences implied pyfor i € |
restrict the possible choices of evasywith i ¢ | to one of the following cases:

(P1) All 2m; + 1 possibilities.

(P2) Aranggp, p'l1 € {1,...,2m;} of possibilities forp, p’ € {1, ..., 2m;} with p, p/

odd, wherdp, p'1 :={p,..., p'}if p< p'and[p, p'] :={p’,....2m;, 1, ... p}
otherwise.
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(P3) The choiceisone of 0,j22] +m; for j € {1, ..., m;j/2}.
(P4) The only choiceispfor j € {1, ..., m}.
(P5) The only choice ig; = 0.

(P6) There is no feasible choice.

An important element in the following algorithm is the augmentation of thé séfixed
patterns by an additional elemarit then the information of the possible choices has to
be updated. For this a matri of sizes x s is computed (once at the beginning of the
algorithm, which will cost at mosD(ns?) operations) such that

A 0 _ if ¢ andcj« have no vertex in common or= i *,
I j > O'suchthav} isong« otherwise

We call A a coline adjacency matrixit is not difficult to see that then an update of the
first-order consequences franto | U {i *} needs for every € {1, ..., s} only a constant
number of operations. It can be seen that for the enumeration of coline cycle patterns
a coline adjacency matriA and a list giving all the lengthsy, of the coline cycles are
sufficient (we do not need an explicit description of the cocircuit graph or the coline
cycles).

It remains to discuss the order in which we fix the pattgonsand this is of great im-
portance w.r.t. the efficiency of the algorithm. lIf= ¢ we choose any € {1,...,s}
with maximalm; (i.e., a longest cycle). If # 1 G {1,...,s}, let |* denote the set of
alli ¢ | for which ¢ intersects at least one coline cycle frdn{l * is not empty, see
Lemma 2.2.6); then we chooseé € | * such thatp;+ has a minimal number of possible
choices w.r.t. the first-order consequences implied byVe call this adynamic order-
ing. This finally leads to the algorithm@CALIZATIONSPATTERNBACKTRACK which is
summarized in Pseudo-Code 5.1.

The algorithm LOCALIZATIONSPATTERNBACKTRACK is much more efficient than all

the previous algorithms for the generation of oriented matroids described in this thesis,
which is also observed from the performance of implementations. Considering only first-
order consequences instead of second-order consequences did not cause many infeasible
situations in the backtracking method; e.g., f&| < 6 and any rank the number of
infeasible cases was always less than 10% of the number of localizations, and for larger
instances this also increases only a little. For more computational results see Chapter 6.

Whereas the first four algorithms which have been described in Sections 4.3, 4.4, and 5.3
do not seem to be similar to previously known methods for the generation of oriented ma-
troids, the algorithm DCALIZATIONSPATTERNBACKTRACK turned out to be related to

an algorithm of Bokowski and Guedes de Oliveira [BGdOOQ0]. At first, the two algorithms
appear to be rather different. While we use cocircuits and cocircuit graphs, the oriented
matroid representation in [BGdOOQ] is based on the chirotope axioms and concentrates
on uniform oriented matroids. This leads to different data structures in the algorithms
(see below). Nevertheless, the two algorithms are closely related when interpreted as al-
gorithms in dual settings, namely hyperplane arrangements vs. point configurations: Lo-
calizations of cocircuit graphs correspond to hyperline configurations in [BGdOO00] as we
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Global Data: s my, ..., ms, a coline adjacency matri& (see above).

Input: 1 € {1,...,s}; P1,..., Ps such thatp; = p; fori € | and f for
I € | contains the information which patterns are possible w.r.t. the first-order
consequences implied lyy fori € I.

Output: is generated whenever a new localization is found.

begin LOCALIZATIONSPATTERNBACKTRACK(I; P1, ..., Ps);
if somep; indicates that no choicp is feasiblethen return
elseifl ={1,...,s}then
output the localization defined ¥, . . ., Ps;
return
else if| = ¥ then choosa * such thatm;+ is maximal
else

I*:={i €1 ] Aj > 0forsomd’ € |};
choosa™* € |* such thatp;+ has a minimal number of possible choices

endif;

for all possible choices o« do
LOCALIZATIONSPATTERNBACKTRACK(I U {i*}; P1, ..., Ps),

wherep, ..., Ps are updated w.r.t. choicg +;
endfor;
return
end LOCALIZATIONSPATTERNBACKTRACK.

Pseudo-Code 5.1: AlgorithmdCALIZATIONSPATTERNBACKTRACK

can consider (halves of) coline cycles and hyperlines (or lines) as being equivalent under
dualization. Then patterns of coline cycles as introduced for algoritb@alLIZATIONS-
PATTERNBACKTRACK and gap positions as used in the algorithm in [BGdOOQO0] coincide.
Also the basic idea of how the patterns (or gap positions) are fixed is similar.

Comparison of the algorithms shows that both are based on similar algorithmic concepts,
however there are also some important differences. In particular, while the algorithm in
[BGAOOOQ] stores both the set of colines and that of bases signatures, our algorithm carries
the colines only. Furthermore, the colines are represented by their bases in [BGdOO0O0] that
are not unique in non-uniform oriented matroids, our algorithm stores the colines directly.
For generating non-uniform oriented matroids, these differences can be substantial. Our
algorithm LOCALIZATIONSPATTERNBACKTRACK is designed for the general case and
the implementation is straightforward, independent from rank or uniformity. Furthermore
we can, if we want, easily restrict to the uniform case: We simply do not consider patterns
of type I or I, i.e., the only change in algorithmolCALIZATIONSPATTERNBACKTRACK

is that only odd values ob; are allowed for patterns.

Another remarkable difference is the order in which the fixing of the patterns (or gap posi-
tions) is done: The algorithm in [BGdOO0O] uses a fixed order of hyperlines, our algorithm
chooses the next coliné ¢ | according to the first-order consequences of the choices
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in I, by this reducing the amount of enumeration and the number of infeasibilities. This

is possibly the reason why the use of second-order consequences was a crucial improve-
ment from earlier algorithms in [BGdOO0O]. We agree that second-order consequences are
important as they reduce infeasible cases; in the case of rank 3 oriented matroids they
even eliminate all infeasibilities (which was already noted in [BGdOO0O]). However, our
experience shows that also without second-order consequences the performance can be
good because the dynamic ordering tends to eliminate infeasible cases efficiently.

A fair comparison of the efficiency of the two algorithms is very difficult as the implemen-
tations are too different to be compared directly. However, more detailed comparisons of
the oriented matroid generation algorithms will be a basis for further investigations and
improvements.
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How many be there of them?
HENRY IV (1:2,2)

Chapter 6

A Catalog of Oriented Matroids

6.1 Introduction

We present in the following the organization of a catalog of oriented matroids or, more
precisely, of the isomorphism classes of oriented matroids. For an overview of the prob-
lems of generating oriented matroids or isomorphism classes of oriented matroids see
Chapter 3.

The two main goals for the construction of a catalog of isomorphism classes of oriented
matroids isa natural ordering principleandan easily accessible data format

When looking for ordering principles of oriented matroids up to isomorphism, one has
to consider representations and invariants of isomorphism classes. It is natural to restrict
representatives of isomorphism classes to simple oriented matroids, and we will do so for
the following. Invariants of isomorphism classes include the numlzdrelements (of a
simple representative), the rankthe big face lattice, the tope graph, and the cocircuit
graph. Itis very natural to use as the first ordering principlndr, i.e., isomorphism
classes are grouped together accordingn tandr. As introduced in Section 3.3, let
IC(n, r) denote the set of all such isomorphism classes for ginamdr . We will consider

in the following IC(n, r) as a list of representatives, where every representative is a simple
oriented matroid of rank on ground seE = {1, ..., n}.

The ordering principle inside I@, r) is less clear. For practical reasons a linear order

of representatives in I@, r) is desirable. Face lattices and graphs seem to lack a natural
total ordering principle themselves [RW98]. For example, if the number of cocircuits
(or topes) is the first order principle inside(I€ r), this will lead to a partial order only.
Adding second order principles etc. will not solve the problem unless there is a guarantee
that this implies a total order for atl andr. Also, the choice of invariants (and the order

in which they apply) seems to be rather arbitrary.

Instead of looking at invariants of one isomorphism class only, the relationship among
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the classes may lead to a natural ordering principle. The most natural relationship is the
one established by minors and extensions. Every isomorphism class has a certain set of
isomorphism classes of minors (or extensions), independent from the representation of
the classes. This might bring up the idea to ordgnl€) by looking at the set of minors

of every class and their relative ordering. It would allow a very natural ordering of iso-
morphism classes if the following question has an affirmative and&@n isomorphism

class determined by the set of isomorphism classes of its mirtdos®ver, the answer

IS no, as can be seen easily from the fact that there are 4 isomorphism classes of uniform
oriented matroids in 1@, 3) which all have the same (unique) uniform deletion minor in
IC(5, 3).

It seems that reasonable ordering principles will depend on the choice of some represen-
tation of the isomorphism class or on the choice of invariants which are arbitrary to some
extend. We present in the following one possibility of how to order the classesnnng;

and in Section 6.3 we will discuss some properties which motivate our organization of the
catalog under the aspect of being natural and practical.

6.2 Organization of Catalog

This section explains the organization of the catalog of isomorphism classes of oriented
matroids as motivated in the previous section. On the most general level, the isomorphism
classes are grouped in lists(iCr), where IGn, r) is a complete list of classes where
every class is represented by a simple oriented matroid on groud=sefl, ..., n} of

rankr := rank(:M).

Letn andr be given. We have to decide

e how the representative of every class i(ri(x ) is encoded,

e which oriented matroid from every isomorphism class is taken as its representative,
and

e in which order the isomorphism classes are listed inside,|©).

For theencodingof an oriented matroid we use the chirotope representation (see Defini-
tion 0.9.6). The chirotope is encoded as a Iis(;bfsigns in some canonical order of the
r-subsets ok = {1, ..., n}, i.e., the subsets d& which contain exactly elements (we

will discuss the order in more detail below). Note that chirotopes are defined as a pair
{x, —x} of maps which are negatives of each other, and as a canonical way to ghoose

or —x we take the one which hasas the first nonzero sign. The chirotope representation

is more compact than, e.g., a set of cocircuits (i.e., less memory is needed). Furthermore
all classes have an encoding of the same size, and there is only one sequence of signs (not
a list of sign vectors), which makes it easy to store many isomorphism classes in one file.
For the chirotope representation, we have to explain the ordering of the bases. We choose
the reverse lexicographic ordesf the bases, where the elements in ewvegubset ofE
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are sorted from small to large. Note that usually the chirotope representation uses a lexi-
cographic order [BLVS99]. Our choice is motivated by the fact that the bases of deletion
and contraction minors w.r.t. the last elemardre naturally grouped in the reverse lex-
icographic order (we explain this in more detail in Section 6.3, where we motivate our
choice further). See Table 6.1 for an example of lexicographic and reversed lexicographic
order forn = 5 andr = 3; the last element = 5 is marked in order to make the bases of
the corresponding minors visible.

Lexicographic| Reverse Lexicographic
123 123
124 124
125 134
134 234
135 125
145 135
234 235
235 145
245 245
345 345

Table 6.1: Lexicographic and reverse lexicographic order of basesy,r = 3)

6.2.1 Definition (Encoding) Let M be an oriented matroid of rank with ground set
E = {1,...,n}. We denote by (M) € {—, +, 0} the encodingof .M by the lexico-
graphically positive map in the chirotope #t, where the signs are given according to
reverse lexicographically sortedsubsets.

As therepresentativef an isomorphism class we choose the oriented matroid for which
its chirotope encoding is lexicographically largest among all oriented matroids in the same
iIsomorphism class, where the signs are ordered as+ < 0, which is motivated in the

next section.

6.2.2 Definition (Representative)Let M be an oriented matroid which belongs to some
iIsomorphism class in I@, r). We denote by rgam) the uniquely determined simple ori-
ented matroid on ground set= {1, ..., n} which is in IC(:M) and for whichy (rep(:M))

is lexicographically maximal, where < 4+ < 0.

In order to find repM) for some given simple oriented matros one has potentially to
consider all permutations ¢1, . .., n} and all reorientations of the elements.

For theorder of the classes IC(n, r) we use an increasing lexicographic ordering of the
representatives, where again< + < 0 as before. Table 6.2 shows the listing of the 17
isomorphism classes in [6, 3); ther -subsets are indicated on the top,{$02, 3} is the
first triple, then{1, 2, 4}, etc.



136 A CATALOG OF ORIENTED MATROIDS

111211212311212312
223323344423344455
34445555556666666666
F+t++++++++++F—++——++
e i o T e e
FHt+t+t+++++++H At —
e e i i o o e
O++++++++++++++—+———
O+++++++++++++++++——
O+++++++++++++++++++
O++++++++++++++++++0
O++++++0+++++++++———
10/ 0++++++0++++++++++——
11| 0++++++0+++++++++++-
12/ 0++++++0+++++++0++--—
13/ 0++++++0+++++++0+0—-—
14 0++++++0++++++0—+———
15/ 000 0++++++++++++++++
16/ 000 0++++++++++++0+++
17/ 000000000 Ot+++++++++

34
55

©Ooo~NoOUulhwWwDNEFO

Table 6.2: The 17 isomorphism classes ii@(3)

6.2.3 Definition (IC(n, r, ¢)) Let M be an oriented matroid such that(l&) belongs to
IC(n,r). Letc > 1 be the position of rgy() in IC(n, r) determined by the lexicograph-
ically increasing order of the chirotope encoding of the representativesimiL We
then write 1IQn, r, c) for IC(M).

6.3 Properties of Catalog

We investigate some of the properties of the catalog which motivates the organization that
was presented in the previous section.

As we choose the order of the bases to be reverse lexicographic, the deletiommjmor
of an oriented matroidi, wheren € E = {1, ..., n} is the element with highest index,
can be easily obtained from the chirotope representatiov):

6.3.1 LemmalLet M = (E, ¥) be a simple oriented matroid such thatE {1, ..., n}
for some n. Set r= rank(:M).

() If n € E is not a coloop then the firgf'""*) signs ofx (M) are not all 0 and are
equal to the signs aof (M \ n) (in the same order).

(i) 1fn € E is a coloop then the firdf"~*) signs ofy () are all 0, and the las('"})
signs ofy (M) are equal to the signs gf (M \ n) (in the same order).
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Proof Consider first some basic facts about the reverse lexicographic ordering of the
r-subsets ofE. The first (") subsets do not contaimand their order is the reverse

lexicographic order of thér — 1)-subsets oE. After these come thér‘j) subsets that
containn, and the ordering of these sets (withdeleted) is the reverse lexicographic
ordering of the(r — 1)-subsets oE \ n.

If n € E is nota coloop then rank(E \ n) = ranky (E) =r, hence there exists a bals

of M which does not contain and the corresponding sign (whichHsor + by definition)

is one of the firs(”r_l) signs iny (M). Furthermore, every basis & \ n is also a basis
of E, and by the definition of a basis orientatigrof M is the restriction to the deletion
minor onE \ n a basis orientation a#( \ n. The claim follows by the above considerations
concerning the reverse lexicographic ordering.

If n € E is a coloop then rank(E \ n) = ranky (E) — 1 =r — 1, hence every-subset
of E \ nis a dependent set, so the fi(%fl) signs iny (M) are all 0. Sincen is a coloop,
every basis ofM is of the formB U n, whereB is a basis ofM \ n. Since every basis
of M containsn andn is always in the same (last) position of the ordered basis used for
the definition ofy, the restriction ofy (M) to the bases ift \ n satisfies the properties of
a basis orientation. As discussed above, the ordering af th& subsets not containing
n is the one of the corresponding extended sets at the(ﬂg%) positions in the reverse
lexicographic order of the-subsets ok, which proves the claim. [ |

Because we choose the representative oriented matroid of an isomorphism class to be the
oriented matroid with the lexicographically maximal chirotope encoding, Lemma 6.3.1
leads to the following result:

6.3.2 Proposition LetM = (E, ) be a simple oriented matroid such thét = rep(:M),
hence E= {1, ..., n} for some n. Set r= rank(M).

(i) M\ n=rep(M)\n).
(i) M has a coloop if and only if n is a coloop.

(i) If nis not a coloop thery (M \ n) = x(rep(:M \ n)) is lexicographically maximal
among ally (rep:M \ 1)) fori e E={1,...,n}.

Proof Considery (M), which is by definition of repM) the lexicographic maximal en-
coding of M’ € IC(M). If E has a coloop, themmust be a coloop, since by Lemma 6.3.1
then (and only then) the Ieadir(@r‘l) signs iny (M) are all 0, which is clearly maximal
because of < + < 0. If M \ n # rep(:M \ n) then by definition there exists an iso-
morphism onE \ n such thaty (M \ n) becomes lexicographically larger. Because of
Lemma 6.3.1 this also makeg M) larger, a contradiction ta( = rep(:M).

If nis not a coloop therE does not have a coloop (see above), hence all encodings
x(M \i)fori € E = {1,...,n} have the same number of signs, which(7?).
Assume thaty (rep(sM \ n)) is lexicographically smaller thap (rep(:M \ i)) for some

i € E={1,...,n}. Then there is an isomorphism which exchangasdn that leads to

a lexicographically larger encoding #f (already in the firs(”r_l) signs), a contradiction
torepgM) = M. ]
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We conclude this section by pointing out some further nice properties of the ordering in
our catalog:

6.3.3 Corollary LetM = (E, ) be a simple oriented matroid such th&t = rep(.M),
hence E= {1, ..., n} for some n. Set r= rank(.M) and considefC(n, r).

(i) The first sign ofy (M) is nonzero (hence-) if and only if M is uniform.

(i) All isomorphism classes of uniform oriented matroids come consecutively at the
first positions inlC(n, r), all non-uniform oriented matroids thereafter.

(i) All isomorphism classes of oriented matroids which have a coloop come consecu-
tively at the last positions itC(n, r).

Proof By the definition of a chirotopey (M) contains no 0 sign if and only if every
r-subset ofE is a basis otM, which is the case if and only iM is uniform. If M is
not uniform, a relabeling of the elementsknsuch that{1, ..., r} is not a basis assures
that the first sign becomes 0. Because-oi< + < 0 a maximal encoding of a non-
uniform oriented matroid will start with a 0 sign. The ordering of the classes in, IG

is lexicographically increasing in the maximal encodings. As the starting sign of uniform
cases is+ and 0 otherwise, by- < + < 0 the uniform cases come before the non-
uniform ones. Finally, by Proposition 6.3.2 (il has a coloop if and only if is a
coloop, and by Lemma 6.3.1 this is the case if and only if all Ieadi‘rjé) signs are 0.
Because of the lexicographical ordering and + < 0 the encodings of classes having
a coloop are larger than all other and come at the last positiongmic ]

Since uniform oriented matroids do not have zeros in the chirotope representation, they
are ordered observing the natural relation< + only.

6.4 Generation of Catalog

We present in this section a method for the generation of oriented matroid isomorphism
classes, producing the catalog as described in Section 6.2. The general approach is de-
scribed in Chapter 3, and for the generation of single element extensions one of the meth-
ods from Chapters 4 and 5 is used; practically this will be algorithmcALIZATIONS-
PATTERNBACKTRACK since it is most efficient and we will not need extensions which
introduce coloops.

Forn =r there is only one isomorphism class (cf. Lemma 3.2.3), and the encoding in the
chirotope has only}) = 1 sign, which is+ by definition. For the generation of (G, r)
withn > r > 1 the procedure is as follows:

e Initialize IC(n,r) := 0.

e Foreverycfrom1to|IC(n—1,r)| do:
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— Let M be the representative of (8— 1, r, ¢), given by its encoding (M).

Compute all single element extensioms of .M, where the new elementis
not a coloop ofM’ and M’ is simple.

— For every single element extensioii’ compute repm’) by computing the
maximal encoding (rep(:M")).

n—1

— Keep only those extensionst’ of M for which the first (",

x (rep(:M")) are equal tg (M).

) signs of

— Sort all remaining extensions w.r.t. increasing lexicographical order of the en-

codingsy (rep(:M")).
— Remove multiple entries in the sorted list of extensions.
— Append the sorted listto I@, r).

e Foreverycfrom1to|IC(n—1,r — 1)| do:

— Let beM the representative of I@—1, r —1, ¢), given by its encoding (M).

— Let x’ be the vector of(") signs whose firs{"*) signs are all 0 and whose
last ("~7) signs are those of () (in the same order).

— Appendy’ to IC(n,r).

6.4.1 Proposition Assume thatC(n — 1,r — 1) andIC(n — 1,r) have been generated
correctly before. Then the method described above correctly gené@ies ).

Proof Every class in I@n, r) is generated exactly once: Lat be the representative of
IC(n,r, c). M has to be generated from some deletion minor.

e If M does not have a coloop, every deletion miosr\ i belongs to some class
in IC(n —1,r). Fori € {1,...,n} considermM' := rep(.M \ i). The algorithm
writes the single element extensignh = rep(.M) to IC(n, r) if and only if the first
(”r_l) signs of x (M) are equal toy (M'). Sincen is not a coloop ofM and by
Lemma 6.3.1 (i) this is the case if and onlyyif.M \ n) = x (M), i.e., if and only
if M\ n=M". HenceM is generated exactly once, namely when the algorithm
considers the class ot \ n.

e If M has acoloop then every coloop minor is the same. This can be seen considering

the set of cocircuitsD and some coloop: by the definition of a coloop there are
two cocircuitsX, — X € D with X = {e}, and, by cocircuit axiom (C2){e = O for
all other cocircuitsy € £. The algorithm generate®# once when considering the
isomorphism class of its (unique) coloop minor.

Every class in I@n, r) is represented correctly:

e If M does not have a coloop, the representativé.#epis computed explicitly in
the algorithm.
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e If M has a coloop then its representation is computed from the representation of its
unique coloop minor by adding leading 0 signs. By Proposition 6.3.2n(ligs to
be a coloop, and by Lemma 6.3.1 this is a correct encoding of his encoding is
lexicographically maximal since the representative of the coloop minor is given by
its lexicographical maximal encoding.

Every class in I@n, r) is at the correct position: By Corollary 6.3.3, it is correct to gen-
erate first classes of oriented matroids which do not have a coloop, then the other classes.
Among the classes of oriented matroids without coloop the main order is given by the
first ("~1) signs of the encoding (M) of every representativ#(, which is x (A \ n) and

which is sorted since the algorithm generates the extensions in the ordemnofICr).

The lexicographic order of representatives which have the same(”ffrgt signs in the
encoding and hence come from the same deletion minor is obtained by sorting them in
the algorithm. Among the classes of oriented matroids which have a coloop the order
is trivially the same as in IG — 1, r — 1), which was assumed to be lexicographically
sorted. ]

Since the extensions of uniform minors have to be uniform again (otherwise they are dis-
carded in the generation method), this first part may use a specialized algorithm which
generates uniform single element extensions only. Such a specialization can be easily ob-
tained from algorithm DCALIZATIONSPATTERNBACKTRACK (see Section 5.4) by re-
stricting to coline patterns of type Il (cf. Theorem 5.2.4).

The generation method of this section can be viewed as a sort of reverse search method
(see also Section 4.3). The only difference is between the adjacency oracle of a reverse
search method [AF96] and the corresponding part in our generation method, which is the
generation of single element extensions of some isomorphism classnnr-IC, r). An
adjacency oracle is indexed by an explicit integer, which makes it possible to consider
one adjacency (i.e., single element extension) after the other. In our generation method
all single element extensions are computed at once, and we cannot avoid multiple exten-
sions from the same minor other than comparing the representatives. However, multiple
extensions from different deletion minors are avoided as it is the case in a reverse search
method.

A major computational drawback of the method is the need to compute the representa-
tives of all single element extensions. Our representation using a reverse lexicographical
order of the bases has the difficulty that the computation of the maximal encodings seems
to be rather hard, which is simpler when using a lexicographical order of bases as usual
(personal communication withudgjen Bokowski andufgen Richter-Gebert) or a repre-
sentation by so-callet-matrices [GP83, AAKO1]. There seems to be a large potential of
improvement of practical generation methods when using a representative of the isomor-
phism classes which can be computed faster. However, our choice of representation is still
good enough not only to compute all cases which were known previously (i.e., uniform
oriented matroids) but also to generate all non-uniform classes for thersamer as
considered for the uniform cases; this is presented in the following section.
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6.5 Overview of Results

This section gives an overview of the results obtained by the generation methods that have
been presented in this thesis. This summary displays the number of isomorphism classes
of oriented matroids and indicates run time and memory usage.

Table 6.3 shows the numbegrkC(n, r)| of isomorphism classes of oriented matroids for

r < n < 10. Missing numbers for = 1 andn < r stand for empty lists 1Q, 1),
whereas the other missing numbers are unknown. The isomorphism classes not only have
been counted but entirely listed (see also Section 6.6).

ln= |1 23 45 6 7 8 9 1Q
r=1 11

r=2 1111 1 1 1 1 1
r=3 1 2 4 17 143 4890 461053 950525832
r=4 1 3 12 206 181472

r=>5 1 4 25 6029

r==6 1 5 50 508321

r=7 1 6 91

r=8 1 7 164
r=9 1 8
r =10 1

Table 6.3: Number of isomorphism classes of oriented matroids

For comparison, Table 6.4 shows the numbers of isomorphism classegaimoriented
matroids forr < n < 10. These numbers have been computed before (see Table 6

\n \1 2 3 45 6 7 8 9 1q
r=1 |1

r=2 11111 1 1 1 1
r=3 1 1 1 4 11 135 4382 312356
r=4 1 1 1 11 2628

r=>5 1 1 1 135

r==6 1 1 1 4382

r= 1 1 1

r= 1 1 1

r = 1 1

r=10 1

Table 6.4: Number of isomorphism classes of uniform oriented matroids

in [Bok93]) and completely coincide with the numbers obtained by our programs. The
generation usually was considered together with the realizability problem, the problem
whether an oriented matroid can be realized by coordinates in Euclidean space (see also
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Section 0.1). For = 3, the generation and classification of the uniform cases is due
to Griinbaum [Gu67, Gu72] forn = 7, Goodman and Pollack [GP80a] far= 8,
Richter-Gebert [Ric88] and Gonzalez-Sprinberg and Laffaille [GSL89fer 9, finally
Bokowski, Laffaille, and Richter-Gebert (unpublished) foe= 10; forr = 4 andn =

8 the classification is due to Bokowski and Richter-Gebert [BRG90]. The realizability
problem is attacked from two sides: (i) finding realizations (using randomly generated
points, various insertion or perturbation techniques) and (ii) proving that no realization
can exist (e.g., with final polynomials [RG92]). The general case still needs work in both
directions: Finding coordinates has the additional difficulty that some realizable instances
do not have rational solutions; on the other hand some of the earlier methods to detect non-
realizability have to be generalized to the degenerate case. The numbers of non-realizable
uniform isomorphism classes are shown in Table 6.5. The classification problem for the
general case is solved for= 3 andn < 8 due to Goodman and Pollack [GP80Db] (all
cases are realizable, which was a conjecture ahGaum [Gu72]).

= [1 234567 89 10

n
r=1 1|0

r=2 O 00O OO0 OO 0
r=3 0O O OO O 0 1 242
r=4 0O 0O 0 0 24

r = O 00 O

r==6 0O 0 0 1

r = 0 0 0 242
r= 0O O 0
r= 0 0
r=10 0

Table 6.5: Number of non-realizable isomorphism classes of uniform oriented matroids

In the uniform case there is a symmetry of the numbers of isomorphism classes (for given
n there are as many uniform classes of rards of rankn — r) which can be explained

by duality arguments (uniform oriented matroids are simple and co-simple; see also Sec-
tion 3.2). This symmetry implieslC(10, 7)| = 312 356; we did not display this number

in Table 6.4 as this is the only number not computed directly. The symmetry under dual-
ization disappears when moving from uniform to general oriented matroids. The reason
for this asymmetry is that dualization of oriented matroids does not preserve the property
of being simple: it is possible that non-parallel elements become parallel, furthermore
coloops will become loops (see Lemma 0.5.9); for details see Section 3.2.

Table 6.6 shows CPU times needed to compute the isomorphism classes of oriented ma-
troids on a Sun Sparc Ultra-60 using one processor at 360 MHz. A ’-’ sign indicates that
the run time is very short, and”’ indicates an approximate value. In current implemen-
tations most of the time is spent to compute the representation of an oriented matroid as
its maximal chirotope encoding (see comments at the end of the previous section).

For those cases where there is a significant amount of CPU time, Table 6.7 shows the
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\ n= \ 1 2 3 45 6 7 8 9 1q
r=1 -
r=2 - - - - - - - - -
r=3 - - - - 3sec 2.2min 3.6 hoursx~72 days
r=4 - - - 10sec 4.1hours
r=>5 - - 2sec 48.3min
r==6 - - 26 sec ~10 days
r=7 - - 9.9 min
r=28 - - 4.8 hours
r=9 - -
r=10 -

Table 6.6: CPU time needed to compute isomorphism classes of oriented matroids

in= | 7 8 9 10|
r=3[21 27 28 ~65
r=4(49 80

r=5|80 481

r=6| - 520 ~1699

r=7| - - 6527

r=28 - - 106463

Table 6.7: Average CPU time needed to compute one isomorphism class (in milliseconds)

average time used for one isomorphism class. There is a tremendous increase as rank
r increases, and a more moderate increase in the number of elemeiffitds can be
explained by the computation of representatives which is significantly more difficult in
higher rank (this is also the case for other choices of representatives which are indicated
at the end of the previous section). This motivates to compute the classes of higher rank
by dualization. The computation of the dual of an oriented matroid is easy when using
basis orientations (see Lemma 0.9.8). For special casés, (i{Cwithr > n — 2) the
enumeration of isomorphism classes becomes rather simple; e.g.(fionkc2) the CPU

time is almost negligible compared to the direct primal approach as used for Tables 6.6
and 6.7. However, the dualization of a set of isomorphism classes is not straightforward
in the general case (see Section 3.2 for more details about the dualization approach).

The memory usage of our generation method is small as there is no need to store many
intermediate results. The memory usage on disk used to store the isomorphism classes is
shown in Table 6.8. The isomorphism classes are stored by the chirotope encodings of
the representative as defined in Section 6.2. For every clasgmnriCthere are(?) signs

to be stored, which are encoded using 2 bits for every sign. For the storage of the larger
lists IC(n, r) (namely whem > 8,r > 3, andn —r > 2) an indirect format is used: for

every non-coloop mino \ n an integer indicates the number of extensions from this
minor, which makes it possible to store only the I§5t) signs of every extension (the

first (”r_l) signs coincide with those of the minor); coloop extensions are not stored at all.
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\ n= \ 1 2 3 4 5 6 7 8 9 1q
r=1 1|1
r=2 1 1 2 3 4 6 7 9 12
r=3 1 2 10 85 1252 26248 3246932 857316999
r=4 1 4 45 1803 1587461
r=>5 1 6 132 51060
r = 1 9 160 7032296
r = 1 12 319
r = 1 16 693
r=9 1 20
r=10 1

Table 6.8: Memory used to store isomorphism classes of oriented matroids (in bytes,
where every byte has 8 bits)

6.6 Access to Catalog and Examples

This section presents part of the catalog of oriented matroids, namely the small-
est sets of isomorphism classes given by their maximal chirotope encoding (see
Section 6.2). The complete catalog can be accessed via the Internet on
http://www.om.math.ethz.ch

We consider first the special cases:

e Forn <rorn>r =1, alllists IC(n, r) are empty.

e Forn =r > 1, all lists IC(n, r) contain exactly one isomorphism class, which is
uniform and represented by oresign (cf. Lemma 3.2.3).

e Forr = 2 there is exactly one class in (€ r) (see Corollary 1.4.4) which is
represented b(/g) signs which are all+ (hence this unique class corresponds to a
uniform oriented matroid).

e Forn =r +1there are exactly—2 =r — 1 classesin I(h, r) (see Lemma 3.2.4),
where IQn, r, ¢) is represented bl ") = n signs whose — 1 first signs are 0 and
all the remaining signs are.

In the following we give the listings of the smaller of the remaining cases.

Table 6.9 shows the listing of the 4 isomorphism classes 5,I18. These 4 classes
are contained as non-coloop minors iN6C3) (see Table 6.2) and as coloop minors in
IC(6, 4) (see Table 6.10).

The 17 isomorphism classes in(&; 3) have been given in Table 6.2.

Table 6.10 shows the 12 isomorphism classes (16,12).
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Table 6.9: The 4 isomorphism classes if3C3)
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| made me no more ado but took all their seven
points in my target, thus.
HENRY IV (1:2,4)

Chapter 7

Complete Listing of Point
Configurations

7.1 Introduction

The generation of combinatorial types of geometric objects such as point configurations,
polytopes, or hyperplane arrangements has long been an outstanding problem of combi-
natorial geometry. We consider in this chapter point configurations and polytopes, in the
following Chapter 8 hyperplane arrangements.

A point configuratioris a set of points in the real Euclidean spaé. Its combinatorial
type, callecorder type is determined by the relative positions of the points, more formally
by the set of all partitions of the points by hyperplanes, where the points may be arbitrar-
ily relabeled. Apolytopeis the convex hull of a point configuration. The combinatorial
type of a polytope is determined by its face lattice.

For the generation of these combinatorial types no direct method is known, and it appears
to be necessary to use combinatorial abstractions as has been the case in previous investi-
gations [GP83, Knu92, AAKO1]; the abstractions used so far (such as allowable sequences
of permutations oi-functions) usually fall together with certain classes of oriented ma-
troids. Although it is NP-hard to decide whether a given oriented matroid is realizable

or not [Mné88, Sho91], the known classifications {67, Gui72, GP80a, Ric88, GSL89,
BRG90] and the practical realization methods [RG92] let the approach using oriented
matroids become a successful method for the generation of combinatorial types.

The former work concentrated on the special case of low dimensionsl(ke2 ord = 3)

and non-degenerate configurations (e.g., no three points lie on a line) which corresponds
to uniform oriented matroids. Our goal is to generate the entire list of all cases forsmall
including degenerate cases in arbitrary dimensiorlowever, we will restrict ourselves

to the generation ofbstractcombinatorial types and will not consider the realizability
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problem here. Nevertheless, this complete generation of abstract order types offers a
powerful data base for various investigations as we will show by an example.

7.2 Point Configurations and Acyclic Oriented Matroids

We explain in this section how combinatorial types of point configurations relate to ori-
ented matroids. We will use the illustration by sphere arrangements as introduced in
Section 0.1.

Consider a point configuratio®® = {v1,...,v"} in R, An oriented hyperplané
partitions# into vertices on the- side ofH, on the+ side ofH, and vertices contained in
H. This defines a corresponding sign vectof+n +, 0}", see Figure 7.1. The collection

Figure 7.1: Sign vector defined by a hyperplane in a point configuration

of all possible sign vectors obtained by hyperplanes fe@rdefines the order type of.
More formally, every oriented hyperplaé in RY can be described by a normal vector
x € RY which points to ther side ofH and a translation given bxg 1 € R such that the
sign vectorX defined by andH has the componenbse = sigr\(Zic':1 voXi + Xd+1) for

e € E. Itis natural to introduce homogeneous coordinates by setﬁgg:: lforee E

as thenzid:l viX; + Xd+1 becomes the scalar producti§fandx in RI*+L, Furthermore,
we can defineA(#) to be the matrix of the = |E| column vectora® € R4*1 e € E.
Similar as in Section 0.1, we define fér := A(P) the set of sign vector§ () :=
{sign(ATx) | x € R9*t1}, and we know from Section 0.1 th&t(#) is the set of covectors
of a realizable oriented matroid.

7.2.1 Definition (Order Type of a Point Configuration) Consider a point configuration
P = {v¥| e € E} in RY on a finite ground seE. Define# (£) as described above. The
order type of? is defined as the relabeling class (#&Z(5)) of the set# (P).

The above definition of an order type is exactly what we initially have described, except
that the zero vectdd is always in¥ (#). The considerations from Section 0.1 imply that
(E, F(£)) is an oriented matroid. Furthermore, the sign ve¢ter... +) isin F (P).
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7.2.2 Definition (Acyclic Oriented Matroid) An oriented matroidM = (E, ¥) such
that there isX € ¥ with Xe = + for all e € E is called aracyclic oriented matroid

7.2.3 Lemma Let & be a point configuration on ground set E. Thdh, F(£)) is an
acyclic oriented matroid.

The following illustration may clarify that there is a one-to-one correspondence between
order types and relabeling classes of realizable acyclic oriented matroids. We @mbed

in R4+1 py addingvg, ; = 1 to everyv®. Geometrically, we can consider the extended
vectors from# as the normal vectors of a central arrangement of hyperplanes, and this
intersected with the unit sphe® leads to a sphere arrangement as depicted in Figure 7.2.
Every sphere in the arrangement has an orientation according to the corresponding normal

Figure 7.2: Point configuration and sphere arrangement

vector, and by this every cell in the sphere arrangement has a one-to-one relation to a sign
vector in £ (£) as introduced above. Note that the cell containing= (O, ...,0,1)
corresponds to the sign vecter - - - +) € F(£). The dimension of the oriented matroid
defined by the sphere arrangemend isnless the points of are contained in & — 1)-
dimensional affine subspace.

On the other hand, if a realizable oriented matraidof dimensiond is acyclic then
there exists a representation bg-@limensional sphere arrangeménvhere some region
corresponds to the toge- - - - +); after an appropriate rotation éfwe can assume that
this region contains the vectdo, ..., 0, 1). The normal vector of every sphef € 4§
which points to thet side of & can be scaled such that tfet+ 1)-coordinate is 1. The
set of these scaled normal vectors defindstimensional point configuratiof® which is
embedded in the hyperplane of points havir(d & 1)-coordinate equal to 1. The oriented
matroid(E, # (£)) is the same ad( if the points are labeled accordingly.

If a point configuration is non-degenerate, i.e., the points are in general position, then the
corresponding acyclic oriented matroid is uniform, and vice versa.
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7.2.4 Definition (Abstract Order Type) We call the relabeling class of an acyclic ori-
ented matroid ambstract order type We call the relabeling class of a uniform acyclic
oriented matroid aon-degenerate abstract order type

7.3 Generation of Abstract Order Types

We will generate abstract order types, i.e., relabeling classes of acyclic oriented matroids,
using the catalog of oriented matroids which has been presented in Chapter 6. For this
considem andd and, observing the relation of dimension and rank (cf. Definition 0.4.5),
the complete list I, d + 1) of all oriented matroids af elements and rant+ 1 up to
iIsomorphism, i.e., up to reorientation and relabeling, as defined in Chapter 6.

Using the model of above we may think of & d + 1) as a list containing all types of
unlabeled and unoriented topological sphere arrangements sftheres oi$®. Abstract

order types have the special property that some cell in the oriented sphere arrangement
corresponds to the sign vectGr - - - +). Consider any oriented sphere arrangenfeint

IC(n,d + 1), in 8 some cellc of maximal dimension and its corresponding sign vector
X(c): A reorientation of§ according toX(c) will let ¢ correspond tq+ - --+). Hence

the list of all sign vectors corresponding to cells of maximal dimensiafy imhich is the

set of topes of the oriented matroid, is sufficient to find all abstract order types isomorphic
to 4.

In terms of oriented matroids, the algorithm is the following:

e Setr :=d + 1.
e Foreveryclass I(,r,c)inIC(n,r) do:

— Let M be the representative of (@, r, c), given by its encoding (M).
— Compute the set of cocircuit® from x (M) (see Proposition 0.9.7).

— Compute fromD the set of topeg™ using algorithm DPEFROMCOCIR-
CUITS (see Pseudo-Code 1.5).

— For every topeX € 7 compute the reorientation @b according toX and
its lexicographically maximal chirotope encoding w.r.t. relabeling (cf. Defini-
tion 6.2.1).

— Remove multiple entries in the list of maximal encodings of reorientations,
and output the resulting list.

Note that every abstract order type belongs to a unique isomorphism class of oriented
matroids, hence every abstract order type is generated exactly once.

Tables 7.1 shows the numbers of abstract order types obtained by computations. Note that
there are considerably feweon-degeneratabstract order types, i.e., abstract order types
corresponding to uniform oriented matroids (see Table 7.2).
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in= |234 5 6 7 8 9 10
d=1/1 11 1 1 1 1 1 1
d=2 1 3 11 93 2121 122508 15296266

=3 1 5 55 5083 10775236
=4 1 8 204 505336
d= 1 11 705
d= 1 15 2293
d= 1 19
d= 1 24
d=9 1
Table 7.1: Number of abstract order types
in= |2 3 45 6 7 8 9 19
d=1|1 1 1 1 1 1 1 1 1
d=2 1 2 3 16 135 3315 158830
d=3 1 2 4 246 160020
d=4 1 3 8 11174
d=5 1 3 11 938513
d=26 1 4 22
d=7 1 4 33
d=28 1 5
d=9 1

Table 7.2: Number of non-degenerate abstract order types

As discussed in Section 6.5, not all oriented matroids are realizblble-degeneratab-

stract order types iit? have been generated recently also by Aichholzer, Aurenhammer,
and Krasser [AAKO1] fom < 10. Their numbers coincide with ours far < 9; the
number fom = 10 is 14 320 182. They also realized these non-degenerate abstract order
types (using the known numbers of isomorphism classes of uniform oriented matroid as
a stopping criterion); the numbers of non-realizable non-degenerate abstract order types
are listed in Table 7.3.

ln= [3 456 7 8 9 10
|d=2]0 0 0 0 0 O 13 10635

Table 7.3: Number of non-realizable non-degenerate abstract order types of rank 3

We present in Figures 7.3 to 7.5 realizations of abstract order types for small instances in
RR?, i.e., for configurations of 3 to 6 points (here, all abstract order types can be realized).
The trivial types of collinear points (i.e., all points on a line) correspond to combinatorial
types inR! and are not counted iR2. We draw the point configurations in Figures 7.3 to

7.5 with some lines which may be helpful when reading the picture. The following rule
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was used for drawing of lines:

1. draw all lines which contain three or more points from the point configuration;
2. determine the points on the boundary of the convex hull of the point configuration;

3. ifthere is a point in the interior of the convex hull, then draw all lines which contain
(at least) two points from the boundary of the convex hull, otherwise only draw
those lines which contain a facet of the convex hull;

4. remove all points on the boundary of the convex hull and repeat steps 2 to 4 for the
remaining points (in general several times, which was not necessary here).

<
N

Figure 7.3: The order types with 3 and 4 non-collinear point&4n

Yy
VPN
IR

Figure 7.4: The 11 order types with 5 non-collinear point®Rf only the first 3 are
non-degenerate
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7.4 Polytopes and Matroid Polytopes

We apply the listing of abstract order types for a corresponding listing of combinatorial
types of polytopes.

Let # be ad-dimensional point configuration, i.e? is in RY and we assume thae is

not contained in an affined — 1)-dimensional subspace. The convex hull®@fdefines

a d-dimensional polytope. Everg-dimensional polytope can be defined this way. A
pointx € £ is called avertex(or anextreme pointof & if it is not contained in the
convex hull of the other points is?. Equivalently, a point is a vertex if and only if there
exists a hyperplane which separates the point from all the others. The convex hull of the
vertices ofP defines the same polytope &5 hence every polytope is defined by a point
configuration whose points are all vertices. The corresponding abstraction to oriented
matroids reads as follows:

7.4.1 Definition (Extreme Point, Matroid Polytope) Let M = (E, ¥) be an acyclic
oriented matroid. We cak € E anextreme pointf X € ¥ such thatXe = — and
X¢ =+ forall f € E\ e. We call. M amatroid polytopef every elemene € E is an
extreme point.

For more about matroid polytopes and the related theory see also Chapter 9 of
[BLVS199].

The list of abstract order types has been used to compute all relabeling classes of ma-
troid polytopes. The procedure uses algorithmPEFFROMCOCIRCUITS (see Pseudo-

Code 1.5), as then the set of topes can be inspected: if for everl there is a topeX

such thatXe = — andX; = + forall f € E\ e, then we have found a matroid polytope.

The numbers of matroid polytopes (up to relabeling) can be found in Table 7.4.

[n= [3 45 6 7 8 9 10
d=2[1 1 1 1 1 1 1 1
d=3| 1 2 12 361 250591

d=4 1 4 62 109786

d=5 1 6 302

d=6 1 9 1239
d=7 1 12
d=8 1 16
d=9 1

Table 7.4: Number of relabeling classes of matroid polytopes

The combinatorial typeof a polytope is determined by its face lattice {67, Zie95]. A

face of a polytope corresponds to a non-negative (or non-positive) covector in the corre-
sponding matroid polytope. By this we can identify two matroid polytopes which corre-
spond to polytopes of same combinatorial type:
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7.4.2 Definition (Combinatorial Polytope Type) Let M = (E, ) be a matroid poly-
tope. We call a covectoX € F apolytope face oM if X > 0 (i.e., Xe € {+, O} for all
e € E). Thecombinatorial polytope typis determined by the set of polytope facestof
up to relabeling: two matroid polytopes haggqual combinatorial polytope typéthey
can be relabeled such that their sets of polytope faces are equal.

If we count the combinatorial polytope types of matroid polytopes, it turns out that the
numbers coincide with the known numbers of combinatorial types of polytopes. In other
words, every combinatorial polytope type of a matroid polytope in our list can be real-
ized by coordinates for the vertices. Hence, if for every combinatorial type of polytopes
coordinates are known, then our listings prove the completeness of the known classifi-
cations (which is an independent proof as our techniques are new). The classification
of combinatorial types of polytopes can be found iny&r; KK95, AS84, AS85]). Ta-

ble 7.5 shows the number of combinatorial polytope types of matroid polytopes which
have been counted from our listings of matroid polytopes. These numbers are the
same as the numbers of combinatorial typesdafimensional polytopes witim ver-

tices. Additional numbers are known fdr= 3 due to Steinitz’ Theorem [SR34] which

(n= [3 456 7 8 9 10
d=2J1 1 1 1 1 1 1 1
d=3| 1 2 7 34 257

d=4 1 4 31 1294

d=5 1 6 116

d=6 1 9 379
d=7 1 12
d=8 1 16
d=9 1

Table 7.5: Number of combinatorial polytope types of matroid polytopes

characterizes the graphs defined by vertices and edges of 3-dimensional polytopes as 3-
connected planar graphs; there are 2606, 32300, 440564, 638463¥mbinatorial types

forn =9, 10,1112 ... (see also [Qs67, KK95] and Sequence A000944 in [Slo01]).
Furthermore, the number of combinatorial typesledimensional polytopes witt + 2

vertices isL%dZJ [Gri67], where| x| denotes the largest integer which is not larger than

X. There is also a formula for polytopes with+ 3 vertices stated by Lloyd in [LI0o70];

it was doubted before whether this formula is completely correct (e.g., see page 172 in
[Zie95]), and we found out that this is not the case: Lloyd’s formula gives a value of
30 combinatorial types fod = 4, correct would be 31 (also for largdrthe values are
incorrect: 111 and 361 instead of 116 and 379%det 5 andd = 6, respectively).

A d-dimensional polytope is callesimplicial if all its (d — 1)-dimensional faces are
(d — 1)-dimensional simplices, which ard — 1)-dimensional polytopes wittl vertices
in general position. Correspondingly, we call a matroid polytape- (E, ) simplicial
if each non-negative cocircuk € D hasd elements inX°, in other words every polytope
face X > 0 of M with dim,(X®) = d satisfieg X°| = d. Note that this is not the same
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as uniformity of M. Among the numerous investigations on simplicial polytopes there
are also studies w.r.t. the combinatorial types. We computed the number of combinato-
rial polytope types of simplicial matroid polytopes which is shown in Table 7.6. For the

[n= [3 456 7 8 9 10
d=2(1 1 1 1 1 1 1 1
d=3| 1 1 2 5 14

d=4 1 25 37

d=5 12 8

d=6 1 3 18
d=7 1 3
d=8 1 4
d=9 1

Table 7.6: Number of combinatorial polytope types of simplicial matroid polytopes

classification of combinatorial types of simplicial polytopes seeuf3r'KK95]. More
numbers than presented in Table 7.6 are knowwlfer 3, where the numbers are 50, 233,
1249, 7595, ..forn =9, 10,11, 12... (see also Sequence A000109 in [Slo01]), and for

d = 4 andn = 9, where the number of combinatorial types is 1142 [ABS80], which has
been obtained by classification of simplicial 3-spheres into polytopal and non-polytopal
spheres and where a non-realizability argument coming from the theory of oriented ma-
troids played an important role. In addition, it is known foe d + 2 that there ar¢%dj
simplicial types [Gu67], and there is also a formula for= d + 3 (Perles in [Gu67], see

also Sequence A000943 in [Slo01]), which gives 29fet 10 andd = 7.

We suggest that the generation of oriented matroids may lead to more results concerning
the combinatorial types of polytopes, especially when specialized generation methods re-
strict to matroid polytopes only. It is important to note that our results on the classification
of general polytopes are based on the generation of general oriented matroids, including
non-uniform ones. It may be an interesting future project to investigate the potential of
(specialized) generation methods in connection with known techniques (e.g., Gale trans-
forms [Gni67, BLVST99]) used for classifications so far.

7.5 A Conjecture Related to the Sylvester-Gallai Theo-
rem

We discuss in this section a conjecture of da Silva and Fukuda (Conjecture 4.2 in [dSF98])
which is related to the well-known Sylvester-Gallai Theorem for point configurations. Our
complete listing of abstract order types will decide the conjecture partially.

We introduce first some notions which are used in the following. Consider a point config-
uration® = {x1,..., x"} in the Euclidean plan&2. We assume for the following that
the points in® arenon-collinear i.e., there is no line which contains all pointsfh We
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call a line inR? anelementary lindf it contains exactly two points af’. A non-Radon
partition of £ is a partition of% into three disjoint subset®—, 2+, 2° such that there
exist an oriented ling for which #~ is the set of point in® on the— side ofs, £ the
set of points on the- side ofs, and2° the set of points i ons. A maximalnon-Radon
partition of 2 is a non-Radon partition wittP® = @, i.e., the separating line@does not
contain any point from®. A maximal non-Radon partition of is calledbalancedif
1P~ = 12H]] < 1.

The Sylvester-Gallai Theorem states that in every configuration of non-collinear points in
R? there exists an elementary line.

7.5.1 Conjecture (da Silva and Fukuda [dSF98])Let »» be a configuration of non-
collinear points inR?. For every balanced, maximal non-Radon partitigh—, 2+, °}
of P there exist X € £, xT € £ which are contained in an elementary line.

An elementary line containing™ € £~ andx™ € £ is also called &rossingelemen-
tary line.

Some weaker versions of Conjecture 7.5.1 have been proved by Pach and Pinchasi [PPOO].

Let us translate the above notions into the language of oriented matroids, and without loss
of generality we restrict for the following to simple oriented matroids. Configurations of
non-collinear points iR? correspond to acyclic oriented matroids of rank 3, and non-
Radon partitions to covectors. A maximal non-Radon patrtition is a tope, and aXtope
corresponds to a balanced non-Radon partiti¢Mf| — |X+|| < 1; we call such a tope
balanced This leads to the following oriented matroid version of the above conjecture:

7.5.2 Conjecture (Oriented Matroid Version of da Silva-Fukuda Conjecture) Let

M = (E, F) be a simple acyclic oriented matroid of rank 3. For every balanced
tope X ofM there is a pair{e, f} € E of elements such thateX= —X; # 0 and
span, ({e, f}) = {e, f} or, equivalently, there exists a cocircuit&y ¥ with YO = {e, f}.

Conjecture 7.5.2 was tested for< 9 against the complete list of abstract order types,
I.e., relabeling classes of acyclic oriented matroids;nfee 10 the conjecture has been
tested based on the list of isomorphism classes of oriented matroids. The result of these
tests is the following:

7.5.3 Proposition Conjecture 7.5.2 is valid forfE| < 8 and |[E| = 10. There is (up to
relabeling) exactly one (simple) acyclic oriented matroid wiEh = 9 elements which
does not satisfy Conjecture 7.5.2; for all other 15296 265 abstract order types-ofd
and|E| = 9 Conjecture 7.5.2 holds.

7.5.4 Corollary Conjecture 7.5.1 is valid forP| < 8 and|#| = 10.

The unique abstract order type in Proposition 7.5.3 which does not satisfy Conjec-
ture 7.5.2 can be given by a set of 30 cocircuits as in Table 7.7, where a violating balanced
topeis(— — + + + + + — —); this tope is, up to negative, the only violating tope out of

52 topes.
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0000-————+[0000++++—
0-——00++—| 0+++00——+
0————— 00— | 0O+++++00+
0——————~ 0| 0+++++++0

~0++0-0-+

+0--0+0+-

~04+++0+-0|+0--—-0—-+40
—0+++++0— | +0-———— 0+
——04+0-+-0|++0-0+-+40
——04++0+0—|++0--0-0+
——04+--0—+|++0-++0+-
———00-+0—|+++00+—-0+
———04+0++— | +++0-0——+
———0--0-0|+++0++0+0
—+4+4+4+00—+|+-—-—-—00+-
—++++++00 | +-—-—-——— 00

Table 7.7: Cocircuits of oriented matroid violating Conjecture 7.5.2

It was found that the above oriented matroid given in Table 7.7 is realizable; corresponding
coordinates for the 9 points are shown in Table 7.8. Furthermore, a violating non-Radon
partition is given by the line through the poin®®35, 1) and (0.6, —1), i.e., the line is
defined by & + y = 3.8 for (’;) € R2. A picture of the counter-example can be found in
Figure 7.6.

In order to prove that the coordinates of Table 7.8 are a correct counter-example, the reader
has to verify the non-trivial collinearities shown in Table 7.9. Furthermore it has to be
verified that the line 8+ y = 3.8 partitions the 9 points intfl, 2, 8, 9} and{3, 4, 5, 6, 7}.

Finally note that there is no crossing elementary line: for each choice=ofl, 2, 8, 9}

ands € {3,4,5, 6, 7} there exists € {1, ...,9}\{r, s} such that, s, t are collinear. This

leads to the following result:

7.5.5 Proposition There exists a configuration of 9 points for which Conjecture 7.5.1 is
not valid. Every configuration of 9 points for which Conjecture 7.5.1 is not valid has the
same order type.

Conjecture 7.5.1 remains open for 11, especially also for an even number of points.

It will be interesting to see more applications of the listing of abstract order types, and
also to see to what extend specialized generation algorithms can be used for resolving
geometric conjectures.
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Algebraic Numerical
(exact) (approx.)
# X y X y
1] 1 1 1 1
2| 3 0 0.5 0
1 2
3| & |-1+%| 04472/ —0.1056
4| 3 —1 [ 0.3333| —0.3333
5(3-2| o0 |03820 O
1 2
6| - | 1--% [04472] 01056
7| o0 0 0 0
1 1
8| % 7= | 04472 04472
9|f 1 -1 |1 -1

Table 7.8: Coordinates of point configuration violating Conjecture 7.5.1

Figure 7.6: The counter-example with 9 points to Conjecture 7.5.1

9



Collinear Points Line Containing Points

1234 2x—y = 1

156 2x+(1—d§)y — 3-.5
178 x—y = 0

257 y =0

269 2x+y =1

359 2x—(1-¢§)y — 3-.5
368 X = %
458 2x—<7—3\/§>y — 3-.5
479 x+y =0

Table 7.9: Non-trivial collinearities of point configuration violating Conjecture 7.5.1



... much more general than these linepaort.
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Chapter 8

Complete Listing of Hyperplane
Arrangements

8.1 Introduction

This chapter introduces hyperplane arrangements in the Euclidean space. Similar to the
previous chapter on point configurations, we discuss the relation to oriented matroids and
generate complete listings of (abstract) combinatorial types of hyperplane arrangements.

A hyperplane arrangemet a set ofn affine hyperplanes i9. Its combinatorial type,

which we call itsdissection typéwe introduce this notion in analogy to the notion of an
order type of a point configuration), is determined by the relative positions of all cells. We
give a more formal definition in the following section. Dissection types have primarily
been studied fod = 2, where the hyperplanes become lines. For the generation of dis-
section types no direct method is known, instead generalizations and abstractions such as
pseudoline arrangements and wiring diagrams have been used, and early it became clear
that there is a strong relation to order types of point configurations. In fact, jprofec-

tive casewhere point configurations and hyperplane arrangements in projectiveBpace

are considered, order types and dissection types fall together and can be viewed as iso-
morphism classes of realizable oriented matroids: consider the illustration of realizable
oriented matroids by sphere arrangements (as introduced in Section 0.1), where spheres
define a projective hyperplane arrangement and their normal vectors a corresponding pro-
jective point configuration. For a “duality principle” in this sense see also [G0080].

In the following we will consider the Euclidean case, where the relation of order types and
dissection types is not obvious. Indeed, the (Euclidean) order types are generated from the
“projective order types”, i.e., isomorphism classes of oriented matroids, by marking one
element (hyperplane) as an infinity element;do& 2 this element can be interpreted as

a “line at infinity”. By this, infinity elements play an analogous role for dissection types
as(+ ... +)-topes for order types: they mark the projective configuration such that its



162 COMPLETE LISTING OF HYPERPLANE ARRANGEMENTS

embedding in a Euclidean space becomes sufficiently determined.

The realizability problem has been discussed in Chapters 6 and 7. Here we only add
that, in contrast to point configurations, there is a topological abstraction of hyperplane
arrangements which corresponds to general oriented matroids (due to the Topological
Representation Theorem of Folkman and Lawrence [FL78]). There are also abstractions
of point configurations in terms of pseudoconfigurations of points, but these do no cover
all oriented matroids fod > 3 [BLVS™99].

For former work on the generation and classification hyperplane arrangements we refer to
[Rin56, Gi67, Gri72, GP80a, GP84]. Our goal will be to generate complete listings of
abstract dissection types for small numbeof hyperplanes, including degenerate cases

in arbitrary dimensiord. This complete generation of small hyperplane arrangements

is, to our knowledge, the first such catalog, and we believe that it will be of interest to
many researchers as a valuable source for testing conjectures and searching for specific
properties.

8.2 Hyperplane Arrangements and Affine Oriented Ma-
troids

This section discusses the relation of combinatorial types of hyperplane arrangements to
oriented matroids. We will illustrate this relation by sphere arrangements which we have
introduced in Section 0.1.

Consider a hyperplane arrangemént= {h, ..., h"} in R9. Every hyperplané® for

e € {1,...,n} can be described by a normal veciére RY and a translation given by
vg41 € Rsuchthah®is the set of points e RY for which Zidzl viXi +vd+1 = 0. Aswe
did for point configurations, we homogenize and introduce a coordigate such that
Zid:l viXi + vd+1 becomes the scalar product«fandx in RI+L if we fix xg41 = 1.
Furthermore, we defind(Q) to be the matrix of then + 1 column vectors given by
v® € Ri*lfore e E := {1,...,n} U{g}, where the vector9 € R9t1 is defined by
v],; = landv? := 0 otherwiseg € E is a new index element which is called thénity
element. The vectar? will be used to observe whethgg, 1 = 1 may be satisfied (note
that by definition the scalar product 0¥ andx € RY is xg41). Similar as in Section 0.1
we define forA := A(Q) the set of sign vector§ (Q) := {sign(ATx) | x € RI+1},
and we know from Section 0.1 th&t(Q) is the set of covectors of a realizable oriented
matroid. Note that the reorientation class®{@Q) is independent from the choice of
forh®,ee E\ g.

8.2.1 Definition (Dissection Type of a Hyperplane Arrangement)Consider a hyper-
plane arrangemer@ = {h®| e € E \ g} in RY on a finite ground seE \ g. Define
F (@) as described above, whage= E denotes the infinity element. Thigssection type
of @ is defined by a tripl€E’, ¥/, g') whereF” is a set of sign vectors o’ andg’ € E’
such that there exists an isomorphism betw@e&@) and #’ which mapgytog'.

The following geometric reasoning may illustrate the relation of hyperplane arrangements
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and oriented matroids further. Similar as for point configurations, a hyperplane arrange-
ment@ = {hl, ..., h"}, whereh€ is a hyperplane ifRY, is embedded iiR9*1 by fixing

the new coordinate to be 1. Evdr§ determines a hyperplart¢€ in R4+1 which contains

he and the origin 0c R9*1. All H® intersected with the unit spheB¥ lead to a sphere
arrangement, where the orientations of the spheres are not given and may be chosen ar-
bitrarily. This sphere arrangement corresponds to a projective hyperplane arrangement;
for the given Euclidean hyperplane arrangement we have to add information how it was
projected ontoS®, and we can do this by adding an extra sphere with normal vector

(0, ...,0,1) which is specially marked (see Figure 8.1). Hence oriented matroids which

Figure 8.1: Hyperplane arrangement and sphere arrangement

are defined by hyperplane arrangements have the special property that one glement
infinity element, is specially marked. The cells in the Euclidean hyperplane arrangement
@ correspond to covector¥ with Xg = +. The dimension of the oriented matroid is

d, unless all spheres (including the sphere of the infinity element) intersect in a common
point, which corresponds to a point “at infinity” in the Euclidean space.

8.2.2 Definition (Affine Oriented Matroid) Let M = (E, ¥) be an oriented matroid,
andg € E, whereg is not a loop. Then we call the tripke, F, g) anaffine oriented
matroid

If in a realizable oriented matroigt of dimensiond some non-loop elementis marked
as an infinity element, then there exists a representationdygienensional sphere ar-
rangemens where the spher§; has the normal vecta®, .. ., 0, 1). The hyperplanes in
R%+1 which contain the spheres 6f\ g define ad-dimensional hyperplane arrangement
by their intersection with the hyperplane of points having & 1)-coordinate equal to 1.
This d-dimensional hyperplane arrangement determigesp to reorientation and up to
relabeling of the elements distinct from the infinity element.
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8.2.3 Definition (Abstract Dissection Type)Two affine oriented matroidsE, #, g),
(E’, ¥', d') are calledaffine isomorphidf there exists an isomorphism betwe@s, )
and (E’, #’) which identifiesg andg’. We call the equivalence class of affine isomor-
phisms of an affine oriented matroid ahstract dissection type

If a hyperplane arrangement is non-degenerate, i.e., the hyperplanes are in general po-
sition (which also means that there are no parallel hyperplanes), then the corresponding
acyclic oriented matroid is uniform, and vice versa. We call the abstract dissection types
corresponding to uniform oriented matroiaisn-degenerate abstract dissection types

8.3 Generation of Abstract Dissection Types

We will generate abstract dissection types using the catalog of oriented matroids which
has been presented in Chapter 6. Consmandd, wheren corresponds to the number

of hyperplanes. As the relation discussed in the previous section introduces an infin-
ity element, we have to consider the list(tC+ 1,r) of all oriented matroids of rank

r = d + 1 (cf. Definition 0.4.5) up to isomorphism in order to find all abstract dissection
types of arrangements afhyperplanes of dimensiah (where the dimension is the one

of the corresponding oriented matroid, so trivial extensions of lower-dimensional hyper-
plane arrangements R are not counted for the givehbut for the corresponding lower
dimension).

The complete list of abstract dissection typesridnyperplanes iRY is obtained from
IC(n 4+ 1,d + 1) by marking infinity elements in all possible ways and by identifying
affine isomorphic types. For every class in(ihG+ 1, d 4+ 1) there aren + 1 choices for
the infinity element.

In terms of oriented matroids, the algorithm is the following:

e Setr :=d + 1.
e ForeveryclassIGh+1,r,c)inIC(n+ 1,r) do:

— Let M be the representative of (€+ 1, r, €), given by its encoding (M).

— For every choice of infinity elememste E = {1, ..., n+ 1} compute the lex-
icographically maximal chirotope encoding w.r.t. reorientation and relabeling
such thae becomes the last elemamtt- 1 (cf. Definition 6.2.1).

— Remove multiple entries in the list of these maximal encodings, and output the
resulting list.

Every abstract dissection type belongs to a unique isomorphism class of oriented matroids,
hence every abstract dissection type is generated exactly once.

The numbers of abstract dissection types obtained by computations can be found in Ta-
ble 8.1.
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(n+1=[23 45 6 7 8 9 14
d=1 |t 111 1 1 1 1 1
d= 138 46 790 37829 4134939
=3 1 5 27 1063 1434219
~4 1 7 71 44956
d=5 19 156
d= 1 11 325
d= 1 13 646
d= 1 15
d= 1

Table 8.1: Number of abstract dissection types

For comparison, Table 8.2 shows corresponding numbermsdordegeneratdissection
types. The known numbers (see [Rin56]) tbe= 2 andn < 7 coincide with the numbers

obtained by our programs.

[(n+1=[2 3 4 5 6 7 8 9 10
d=1 |1 1 1 1 1 1 1 T 1
d=2 1 1 1 6 43 922 38612
d=3 1 1 1 43 20008

d=4 11 1 922

d=5 11 1 38612
d=6 1 1 1
d=7 1 11
d=8 11
d=9 1

Table 8.2: Number of non-degenerate abstract dissection types

As discussed in Section 6.5, not all oriented matroids are realizable. It has been proved
by Goodman and Pollack [GP80b] that every arrangement of at most eight pseudolines is
stretchable, and any arrangement of nine is stretchable if some four lines meet in a point.
For further comments on the realizability see in Chapters 6 and 7.

We present in Figures 8.2 to 8.4 realizations of abstract dissection types for small instances
in R?, i.e., for arrangements of 2 to 5 hyperplanes (here, all abstract dissection types can
be realized). Degenerate intersections (i.e., points where three or more lines intersect) are
marked; lines without intersection in the drawing are parallel. The trivial types of all lines
parallel correspond to combinatorial typesRih and are not counted iR?.
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Glossary of Notation

Sets: e.g.,R, S E

|E|

SCE, S;Ct E
2E

E\NS

RNS RUS
E Ueetc.

cardinality of set

subset, proper subset

power set (set of all subsets Bj
set difference

set intersection, set union
denotek U {e} etc. 21

Sign Vectors: e.g., X,Y € {—, +,0}F, F c {—, +,0)F

Xe

Xs, X\'S

X\ eetc.

0

-X

§X

X, X9, Xt andX~
D(X,Y)

X=<Y, X<Y

X <0, X <0etc.
XoY

XxY

component

sign vector restricted t8, restricted toE \ S 21
denotexX \ {e} etc. 21

zero vector 21

negative (all signs reversed?1

signs inSreversed 21

support, zero support, positive and negative supit
separating (or disagreeing) elemerid
conformal relation 22

signs are- or 0, signs are- etc. 33
composition 21

orthogonality 33

Matroids: e.g.,M = (E, A)

A

H

S=span, (S)
ranky (S), rank’ M)
B

M\ R

M/R

flats (closed sets)23
hyperplanes27

span ofS 24

rank of S, rank ofM 26
bases 24

deletion minor 29
contraction minor 29
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Oriented Matroids: e.g.,.M = (E, )

F covectors 21

D cocircuits 37

T topes 41

X chirotope 50

M underlying matroid 24

ankM(X), rank.M) rankof X € #, rank of M 30
dimy (X), dim(M) dimension ofX € ¥, dimension ofM 30
F =FU{l}, F(M) setoffaces, bigface latticel4

F set ofi-faces (faces of dimensiog 45
fi = |F| number ofi -faces 45

M\ R deletion minor 29

M/R contraction minor 29

Classes of Oriented Matroids: e.g., IQM)

LC(M) relabeling class ot 57

OC(M) reorientation class oM 57

IC(M) isomorphism class oM 57

IC(n,r) set of all IQM) with M simple,n = |E| and rank: 100
IC(n,r,C) class in IGn, r) at positionc 136

Graphs: e.g.,G = (V(G), E(G))

v e V(G) vertex 55

{v,w} e E(G) edge 55

dg(v, w) combinatorial distance in grafgh 55
diam(G) diameter 55

Aut(G) automorphism group55



Subject Index
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acyclic oriented matroids, 149
acycloid, 58
acycloidal signature, 109

strong, 110

weak, 110
affine oriented matroids, 163
antipode label, 77
antipodes

in cocircuit graphs, 77

in tope graphs, 60
AP-label, 77
AP-labeling problem, 77
associating bijection

in cocircuit graphs, 76

in tope graphs, 56
augmentation, 113
automorphism of graphs, 55

bases, 24
cardinality, 26
exchange property, 26

basis orientations, 49

big face lattice, 44
diamond property, 45

central hyperplane arrangement, 16
chirotopes, 50
co-parallel, 96
co-simple, 96
cocircuit graphs, 75
antipodes, 77
localizations, 120
cocircuits, 37
axioms, 38
determine covectors, 37
modular elimination, 39
strong elimination, 38
coline cycles, 80

colines, 27
coloop, 31

combinatorial polytope type, 155

composition, 21
conformal decomposition, 37
conformal elimination, 22
conformal relation, 19, 22
contraction minors, 29
covectors

axioms, 21

conformal elimination, 22

determined by cocircuits, 37

determined by topes, 42
weak elimination, 22

deletion minors, 29
diameter of a graph, 55
diamond property, 45
dimension

in oriented matroids, 30
disagree, 21
dissection type, 162
distance in graphs, 55
distance of coline cycles, 82
dual, 33

edge class, 60
edges, 55
element, 21
encoding, 135
extension, 100
extreme point, 154

i-face, 45
face lattice, 44

diamond property, 45
facial relation, 19, 22
flat axioms, 23
fundamental cocircuit, 49
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graph, 55
automorphism, 55
cocircuit graph, 75
diameter, 55
distance, 55
iIsomorphism, 55
tope graph, 55

graph label, 76

ground set, 21

hyperplane arrangements, 161
dissection type, 162
hyperplanes, 27

independent sets, 24
isomorphism of graphs, 55
isomorphism of sets of sign vectors, 57

L1-system, 58

label of a graph, 76

linear, 17

localizations
of cocircuit graphs, 120
of tope graphs, 108
weak localizations, 125

loop, 31, 42

M-label, 77
M-labeling problem, 77
matroid label, 77
matroid polytope, 154
matroids
bases, 24
flat axioms, 23
hyperplane axioms, 27
independent sets, 24
rank, 26
span, 24
underlying matroid, 24
uniform, 28
maximal localization, 115
minors
contraction, 29
deletion, 29
modular, 39
modular cocircuit elimination, 39

negative, 21

negative support, 21

OM-label, 76
OM-labeling problem, 77
OMP, 46
order type, 148
ordered sets, 48
oriented matroid label, 76
oriented matroid program, 46
oriented matroids
acyclic, 149
affine, 163
axioms
cocircuits, 38
covectors, 21
modular cocircuit elimination, 39
big face lattice, 44
chirotopes, 50
cocircuit axioms, 38
covector axioms, 21
defined by a matrix, 16
dimension, 30
extension, 100
face lattice, 44
generation problem, 95
isomorphism checking problem, 101
isomorphism class generation prob-

lem, 96

isomorphism class representation
problem, 101

linear, 17

modular cocircuit elimination, 39

multiple extension reduction prob-
lem, 101

rank, 30

rank O, 46

rank 1, 46

rank 2, 67

realizable, 17

single element extension, 100

single element extension problem,
101

topes, 41

uniform, 28

orthogonality, 33

parallel, 42
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parallel classes, 42
point configurations, 147
order type, 148
polytopes, 147, 154
combinatorial type, 155
positive support, 21
pseudosphere arrangement, 18

rank

in face lattice, 44

in matroids, 26

in oriented matroids, 30
realizable, 17
relabeling, 57
reorientation, 57
reorientation property, 43
representative, 135

separable tope graphs, 63
separate, 21
shelling property, 43
sign vector, 21
signatures, 107
simple, 57
simplification, 57
single element extension, 100
span, 24
sphere arrangement, 18
strong acycloidal signature, 110
strong cocircuit elimination, 38
support, 21
negative support, 21
positive support, 21
zero support, 21

tope graphs, 55
antipodes, 60
localizations, 108
separable, 63

topes, 41
determine covectors, 42

types of coline cycles, 122

underlying matroid, 24
uniform, 28

vertex label, 76
vertices of graph, 55

vertices of point configuration, 154

weak acycloidal signature, 110
weak elimination, 22
weak localizations, 125

zero support, 21



