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Abstract

This thesis studies the reconstruction and generation of oriented matroids. Oriented ma-
troids are a combinatorial abstraction of discrete geometric objects such as point con-
figurations or hyperplane arrangements. Both problems, reconstruction and generation,
address fundamental questions of representing and constructing (classes of) oriented ma-
troids. The representations which are discussed in this thesis are based on graphs that are
defined by the oriented matroids, namely tope graphs and cocircuit graphs. The first part
of this thesis studies properties of these graphs and the question as to what extent oriented
matroids are determined by these graphs. In the second part, these graph representations
are used for the design of generation methods which produce complete lists of oriented
matroids of given number of elements and given rank. These generation methods are used
in the third part for the construction of a catalog of oriented matroids and of complete
listings of the combinatorial types of point configurations and hyperplane arrangements.

The reconstruction problem is the problem of whether an oriented matroid can be re-
constructed from some representation of it, which is here the tope graph and the cocir-
cuit graph. It is known that tope graphs determine oriented matroids up to isomorphism.
However, there is no simple graph theoretical characterization of tope graphs of oriented
matroids. We strengthen the known properties of tope graphs and prove that for every
element f the topes that are not bounded byf induce a connected subgraph in the tope
graph. This property is later used for the design of generation methods that are based on
tope graphs.

On the contrary to the tope graph case, it is known that cocircuit graphs do not determine
isomorphism classes of oriented matroids. However, if every vertex is labeled by its sup-
porting hyperplane, oriented matroids can be reconstructed up to reorientation. We present
a simple algorithm which gives a constructive proof for this result. Furthermore, we ex-
tend the known results and show that the isomorphism class of auniformoriented matroid
is determined by its cocircuit graph. In addition, we present polynomial algorithms which
provide a constructive proof to this result, and it is shown that the correctness of the input
of the algorithms can be verified in polynomial time.

The generation problem asks for methods for listing all oriented matroids of given car-
dinality of the ground set and given rank. The known generation methods have been
designed primarily for uniform oriented matroids in rank 3 or 4. Our methods are based
on tope graph and cocircuit graph representations and generate all isomorphism classes
of oriented matroids, including non-uniform ones in arbitrary rank. The generation ap-
proach incrementally extends oriented matroids by adding single elements. These single
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element extensions are studied in terms of localizations of graphs, which are signatures
on the vertex sets that characterize single element extensions.

The first two generation methods are based on tope graphs. These methods make use of the
properties of tope graphs studied earlier in this thesis, especially of the new connectedness
property. The first method is a reverse search method for the generation of generalized
localizations in the tope graph. In the second method graph automorphisms are used
to reduce the amount of isomorphic single element extensions. Furthermore we discuss
techniques which reduce multiple extension of the same oriented matroid from different
minors.

Two algorithms based on cocircuit graph representations are designed similarly to those
based on tope graphs. However, all these first four generation methods lack efficiency,
and a reason for this is that they do not use a good characterization of localizations. Due
to a result of Las Vergnas, localizations of cocircuit graphs can be characterized by sign
patterns on the coline cycles in the cocircuit graph. This allows us to design a fifth method
which is efficient in practice. This method is a backtracking algorithm which enumerates
all sign patterns of coline cycles that are feasible in terms of the characterization. It
turns out that the method is similar to a method of Bokowski and Guedes de Oliveira
for the uniform case. Our method is more general as it is capable to handle all oriented
matroids in arbitrary rank, including non-uniform oriented matroids. Furthermore it uses
an efficient data structure and a new dynamic ordering in the backtrack procedure.

The generation methods are used for the construction of a catalog of oriented matroids.
This catalog is organized using basis orientations of oriented matroids. We discuss some
properties of the catalog and a method to generate the catalog. The catalog of ori-
ented matroids can be used to find complete listings of combinatorial types of point
configurations and hyperplane arrangements. We study these listing problems and dis-
cuss solution methods. Furthermore we show by an example the potential of these
complete listings in resolving geometric conjectures. The listings of oriented matroids,
point configurations, and hyperplane arrangements can be accessed via the Internet on
http://www.om.math.ethz.ch .



Zusammenfassung

Diese Dissertation behandelt die Rekonstruktion und Erzeugung von Orientierten Matro-
iden. Orientierte Matroide sind eine kombinatorische Abstraktion von diskreten, geome-
trischen Objekten wie z. B. Punktkonfigurationen oder Hyperebenenarrangements. Bei-
de Probleme, Rekonstruktion und Erzeugung, stellen fundamentale Fragen bez¨uglich der
Darstellung und Herstellung von (Klassen von) Orientierten Matroiden. Die Darstellun-
gen, welche in dieser Dissertation diskutiert werden, basieren auf Graphen, die durch
die Orientierten Matroide definiert werden, n¨amlich Tope-Graphen und Kokreis-Graphen.
Der erste Teil dieser Dissertation untersucht Eigenschaften dieser Graphen und die Fra-
ge, wie weit Orientierte Matroide durch diese Graphen bestimmt werden. Im zweiten Teil
werden diese durch Graphen gegebenen Darstellungen f¨ur die Entwicklung von Erzeu-
gungsmethoden verwendet, welche vollst¨andige Listen von Orientierten Matroiden mit
einer gegebenen Anzahl von Elementen und gegebenem Rang herstellen. Diese Erzeu-
gungsmethoden werden im dritten Teil verwendet f¨ur die Erstellung eines Kataloges von
Orientierten Matroiden und von vollst¨andigen Auflistungen der kombinatorischen Typen
von Punktkonfigurationen und Hyperebenenarrangements.

Das Rekonstruktionsproblem ist gegeben durch die Frage, ob ein Orientiertes Matroid von
einer gewissen Darstellung von ihm wiederhergestellt werden kann; die hier betrachteten
Darstellungen sind der Tope-Graph und der Kokreis-Graph. Es ist bekannt, dass Tope-
Graphen Orientierte Matroide bis auf Isomorphie bestimmen. Allerdings gibt es keine
einfache, graphentheoretische Charakterisierung der Tope-Graphen von Orientierten Ma-
troiden. Wir erweitern die bekannten Eigenschaften von Tope-Graphen und beweisen,
dass für jedes Elementf die durch f nicht begrenzten Tope im Tope-Graphen einen zu-
sammenh¨angenden Untergraphen induzieren. Diese Eigenschaft wird sp¨ater für die Ent-
wicklung von Erzeugungsmethoden verwendet, welche auf Tope-Graphen basiert sind.

Im Gegensatz zum Tope-Graphen bestimmt der Kokreis-Graph die Isomorphieklasse ei-
nes Orientierten Matroids nicht. Wenn aber jeder Knoten mit der St¨utzhyperebene mar-
kiert wird, kann das Orientierte Matroid bis auf Reorientierung rekonstruiert werden. Wir
stellen einen einfachen Algorithmus vor, der dieses Ergebnis konstruktiv beweist. Ausser-
dem erweitern wir die bekannten Resultate und zeigen, dass die Isomorphieklasse eines
uniformenOrientierten Matroids durch den Kokreis-Graphen bestimmt ist. Zudem stellen
wir polynomiale Algorithmen vor, welche einen konstruktiven Beweis dieses Ergebnisses
bieten, und es wird gezeigt, dass die Eingabe der Algorithmen in polynomialer Zeit auf
Korrektheitüberprüft werden kann.

Das Erzeugungsproblem verlangt nach Methoden zur Auflistung aller Orientierten Ma-
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troide von gegebener Kardinalit¨at der Grundmenge und gegebenem Rang. Die bekann-
ten Erzeugungsmethoden wurden haupts¨achlich für uniforme Orientierte Matroide im
Rang 3 oder 4 entwickelt. Unsere Methoden basieren auf Darstellungen durch Tope-
Graphen und Kokreis-Graphen und erzeugen alle Isomorphieklassen von Orientierten
Matroiden, einschliesslich nicht-uniformer in beliebigem Rang. Der Erzeugungsansatz
erweitert schrittweise Orientierte Matroide durch Hinzuf¨ugen einzelner Elemente. Diese
1-Element-Erweiterungen werden anhand von Lokalisierungen von Graphen untersucht,
welches Signaturen auf der Knotenmenge sind, welche 1-Element-Erweiterungen charak-
terisieren.

Die ersten beiden Erzeugungsmethoden basieren auf Tope-Graphen. Diese Methoden ma-
chen Gebrauch von den Eigenschaften von Tope-Graphen, die vorher in dieser Disserta-
tion untersucht wurden, besonders von der neuen Zusammenhangseigenschaft. Die erste
Methode ist eine Umkehrsuchmethode f¨ur die Erzeugung von verallgemeinerten Loka-
lisierungen im Tope-Graphen. In der zweiten Methode werden Graphenautomorphismen
verwendet, um die Menge von isomorphen 1-Element-Erweiterungen zu reduzieren. Wei-
ter diskutieren wir Techniken, welche das mehrfache Erzeugen des gleichen Orientierten
Matroids von verschiedenen Minoren vermindern.

Basierend auf Darstellungen mittels Kokreis-Graphen werden zwei Algorithmen ent-
wickelt, ähnlich jenen, die auf Tope-Graphen basieren. Diese ersten vier Erzeugungs-
methoden sind jedoch alle wenig leistungsf¨ahig, und ein Grund daf¨ur liegt darin, dass sie
keine gute Charakterisierung von Lokalisierungen verwenden. Infolge eines Ergebnisses
von Las Vergnas k¨onnen Lokalisierungen von Kokreis-Graphen charakterisiert werden
durch Vorzeichenmuster auf den Kolinien-Kreisen im Kokreis-Graph. Dies erlaubt uns,
eine fünfte Methode zu entwickeln, welche in der Anwendung effizient ist. Diese Metho-
de ist ein R¨uckverfolgungs-Algorithmus, welcher alle Vorzeichenmuster von Kolinien-
Kreisen enumeriert, die zul¨assig sind im Sinne der Charakterisierung. Es stellt sich heraus,
dass die Methode ¨ahnlich ist zu einer Methode von Bokowski und Guedes de Oliveira f¨ur
den uniformen Fall. Unsere Methode ist allgemeiner, da sie alle Orientierten Matroide in
beliebigem Rang behandeln kann, einschliesslich nicht-uniformer Orientierter Matroide.
Zudem benutzt sie eine effiziente Datenstruktur und eine neue dynamische Reihenfolge
im Rückverfolgungs-Verfahren.

Die Erzeugungsmethoden werden f¨ur die Erstellung eines Kataloges von Orientierten Ma-
troiden verwendet. Dieser Katalog wird mittels Basisorientierungen von Orientierten Ma-
troiden organisiert. Wir diskutieren einige Eigenschaften des Kataloges und eine Methode
für die Erzeugung des Kataloges. Der Katalog von Orientierten Matroiden kann verwen-
det werden, um vollst¨andige Auflistungen der kombinatorischen Typen von Punktkonfi-
gurationen und Hyperebenenarrangements zu finden. Wir untersuchen diese Auflistungs-
probleme und diskutieren L¨osungsmethoden. Weiter zeigen wir mit einem Beispiel das
Potential dieser vollst¨andigen Auflistungen im L¨osen von geometrischen Vermutungen.
Die Auflistungen von Orientierten Matroiden, Punktkonfigurationen und Hyperebenen-
arrangements sind im Internet zug¨anglich unterhttp://www.om.math.ethz.ch .
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Motivation and Overview

Introduction

Oriented matroids are a natural mathematical notion which may be viewed as a combi-
natorial abstraction of real hyperplane arrangements, convex polytopes, or point config-
urations in the Euclidean space. The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. There are several different (but equivalent) axiom systems and repre-
sentations of oriented matroids, and the theory of oriented matroids has connections and
applications to many areas of mathematics. These areas include combinatorics, discrete
and computational geometry, optimization, and graph theory.

We illustrate oriented matroids in the following by sphere arrangements. A more detailed
introduction to oriented matroids is given in Chapter 0. For a most comprehensive pre-
sentation of the theory of oriented matroids we refer to the monograph of Bj¨orner, Las
Vergnas, Sturmfels, White, and Ziegler [BLVS+99].

A finite sphere arrangementS = {Se | e ∈ E} in the Euclidean spaceRd+1 is a collection
of (d − 1)-dimensional unit spheres on thed-dimensional unit sphereSd, where every
sphereSe is oriented (i.e. has a+ side and a− side). Figure 1 shows an example for
d = 2 with |E| = 4 spheres; in the following we will refer to this example several times.
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Figure 1: Sphere arrangement
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The sphere arrangementS induces a cell complexK on Sd. For every pointx on Sd we
define asign vector X∈ {−,+, 0}E by settingXe = 0 if x is on Se, otherwiseXe = +
(or Xe = −) if x is on the+ side (or− side, respectively) ofSe. For example, the point
A in Figure 1 is associated to the sign vector( 0 0 − + ), and a point in the (relative
interior of) regionBC D is mapped to(+ + + +). We call these sign vectorscovectors
and denote the set of all covectors byF . Obviously there is a one-to-one correspondence
between the cells inK and the covectors inF . Furthermore the facial relationship in
K can be recognized inF : for covectorsX,Y ∈ F , X corresponds to a subface of the
face corresponding toY if and only if Xe 6= 0 implies Xe = Ye for all e ∈ E. By this,
K andF have the same face poset. We call(E,F ) the oriented matroid defined byS.
WhereasS andK are a geometric objects, the corresponding oriented matroid(E,F ) is
purely combinatorial, reflecting the relative positions of the cells in the complexK only.
In general, oriented matroids are defined by axioms forF . Not every oriented matroid
has a realization by a sphere arrangement, but every oriented matroid can be represented
by a topological sphere arrangement ([FL78, Man82], see also Chapter 0).

For the study of combinatorial objects, an axiomatic foundation as in the theory of ori-
ented matroids is a crucial advantage, as compared to direct work on geometric realiza-
tions where such a foundation is missing. By their axioms, oriented matroids have poly-
nomial characterizations; on the other hand it isNP-hard to decide whether an oriented
matroid has a realization (by a sphere arrangement) or not [Mn¨e88, Sho91], i.e., there is
no polynomial characterization of the combinatorial structure (in the sense of an oriented
matroid) of a sphere arrangement unlessP = NP. Furthermore, there are methods to
decide whether an oriented matroid is realizable or not which work satisfactory for small
instances [RG92].

In addition to the existence of axioms, the finiteness of oriented matroids can guarantee
the completeness of investigations. For given dimension and number of spheres there
exists an infinite number of sphere arrangements, whereas there are only finitely many
combinatorial types of such arrangements, i.e., there is only a finite number of different
face posets of oriented matroids. Many combinatorial problems are so difficult that often
the most promising way is the enumeration of all possible cases. For combinatorial prob-
lems which arise from geometry and have an abstraction in terms of oriented matroids
the enumeration of all cases is, in principle, possible because of the finiteness and the
axiomatic foundation of oriented matroids. The following two examples may illustrate
the importance of methods for the generation of oriented matroids.

The geometric realization of triangulated 2-manifolds is the problem whether some given
triangulated (topological) 2-manifold has a polyhedral embedding inR3. In other words,
for a list of triangles onn vertices which describe an abstract 2-complex, the problem
is to decide whether there are coordinates for the vertices such that the triangles in the
list correspond to non-intersecting facets of a geometric 2-manifold. For 2-manifolds of
genusg = 0 (i.e., spheres) the problem is decidable because of Steinitz’s theorem: the
2-manifold is realizable if and only if the graph defined by the adjacency of the vertices
is planar and 3-connected. For 2-manifolds of genusg > 0 (spheres withg handles)
the problem was posed by Gr¨unbaum (Exercise 3 of Section 13.2 in [Gr¨u67]) and is wide
open; only certain smaller instances are decided. A remarkable progress has been recently
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made by Bokowski and Guedes de Oliveira [BGdO00] who proved by enumeration of
oriented matroids that there is no realization of a certain 2-manifold withn = 12 vertices
which has genusg = 6. For a more detailed survey on polyhedral 2-manifolds see Section
A.7 in [BLVS+99].

The order type of a point configuration, as introduced by Goodman and Pollack [GP83],
is the combinatorial type described by all the relative positions in a finite set of points
in the Euclidean space. Many problems in combinatorial geometry are stated in terms
of point configurations, and there have been early attempts to list all order types, or all
combinatorial types of related structures such as hyperplane arrangements. However,
these listings could consider only very small cases, configurations of at most 5 points
in [GP80a] or (projective) hyperplane arrangements of at most 6 hyperplanes in [Gr¨u72]).
Furthermore the completeness of the listings was not always clear (e.g., in an earlier list
of all arrangements of at most 6 hyperplanes in Section 18.1 of [Gr¨u67] one case was
missing). Often the listing was restricted to some special, non-degenerate cases inR2.
Recently there has been a considerable progress in the enumeration of non-degenerate
order types of point configurations in the Euclidean plane by Aichholzer et al. [AAK01],
by this establishing the first data base of all non-degenerate order types forn ≤ 10 points
in R2. This data base has been contructed by generation of certain representations of
oriented matroids which have been realized by coordinates as far as possible, where the
completeness of the listing has been guaranteed by known realizability results from the
literature (e.g., see [Bok93]). Applications of the order type data base to several problems
in computational and combinatorial geometry [AK01] has shown the usefulness of such
listings.

Problems and Goals

A main goal of this thesis is to investigate and develop methods which generate complete
listings of oriented matroids of given size. Techniques for listing oriented matroids for
small n = |E| and d have been studied, among others, by Bokowski, Sturmfels, and
Guedes de Oliveira (e.g., [BS87, BS89, BGdO00]). However, it seems that the meth-
ods are designed primarily for the case of uniform oriented matroids and low dimen-
sion (d = 2 or d = 3). Uniform oriented matroids are those which correspond to non-
degenerate (pseudo-)sphere arrangements, i.e., the spheres are assumed to be in general
position (see Figure 2). Our goal is to find methods which work for general oriented
matroids in arbitrary dimension, including non-uniform oriented matroids.

Many questions which can be solved when having a complete list of oriented matroids
only depend on the isomorphism class, which is the equivalence class under reorientation
and relabeling of the elements. An illustration of isomorphism classes are arrangements
of unoriented and unlabeled spheres (as showed in Figure 2). Important combinatorial
properties such as the face poset only depend on the isomorphism class, even more, the
face poset determines the isomorphism class. However, the face poset is a rather compli-
cated and very redundant structure and hence not well suited for practical purposes. It will
be sufficient to use only parts of the face poset, namely two graphs which are defined by
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Figure 2: Sphere arrangements of non-uniform and uniform oriented matroids

the face poset, the so-calledtope graphand thecocircuit graph. These graphs will serve
as a base of rather simple and compact representations of isomorphism classes of oriented
matroids and will be helpful for the design of methods that solve the problem which we
posed above: the generation of isomorphism classes of arbitrary oriented matroids.

Consider again thed-dimensional sphere arrangementS with corresponding cell complex
K and oriented matroidM = (E,F ) as introduced above. The cells of maximal dimen-
sion d − 1 in K are calledregionsand the corresponding covectors inF topes. Two
regions are calledadjacentif they have a common(d − 2)-dimensional face, and this is
the case if and only if the corresponding topesX andY disagree in exactly one sign. This
defines an adjacency notion for topes and by this a graph whose vertices correspond to
topes, which is called thetope graphof the oriented matroid. Figure 3 shows the cell com-
plex with two adjacent regionsAB D andBC D, which correspond to the adjacent topes
(+ + − +) and(+ + + +), and the tope graph of the corresponding oriented matroid.
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Figure 3: Adjacent regions in sphere arrangement and tope graph
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It is known that the tope graph determines the whole face poset [BEZ90]. This motivates
to use tope graphs as a representation of isomorphism classes. This brings up two prob-
lems: to reconstruct an oriented matroid for a given tope graph, and to decide whether a
given graph is the tope graph of some oriented matroid or not. For example, it is known
that every tope graph is bipartite and embeddable in some hypercube, but this is not a
characterization. It is a goal of the thesis to review known results, to extend them, and
to discuss algorithmic solutions for these reconstruction and characterization problems.
These investigations will enable us to design algorithms for the generation of tope graphs
of oriented matroids, hence for the generation of oriented matroids up to isomorphism.

A second graph which is defined by the face poset is thecocircuit graph. Consider again
the sphere arrangementS as introduced above. The cells of minimal dimension (i.e., the
0-dimensional cells) inK are the vertices of a graph whose edges correspond to the 1-
dimensional cells inK, i.e., two vertices are adjacent if they are the two endpoints of a
1-dimensional cell inK. In short, this graph is the 1-skeleton ofK. In the oriented ma-
troid M = (E,F ) defined byS, the covectors which correspond to 0-dimensional cells
are calledcocircuits. The adjacency for cocircuits corresponding to the one of vertices in
K is defined by the facial relationship of covectors as defined above. In the example from
above consider two cocircuits, say( 0 + 0 + ) and(+ 0 0 0), which correspond to the
verticesB andD in the sphere arrangement. These cocircuits are adjacent since they are
the only two proper subfaces of(+ + 0 + ) ∈ F , which corresponds to the faceB D in
K. The adjacency relation of cocircuits defines thecocircuit graphof an oriented matroid
(see also Figure 4). Cocircuit graphs are quite different from tope graphs, e.g., a cocircuit
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Figure 4: Sphere arrangement and cocircuit graph

graph is not bipartite ford ≥ 2. Furthermore, it is known that cocircuit graphs do not
characterize the face poset [CFGdO00]. Nevertheless, when some information is added to
the graph, such as vertex labels which indicate for every vertexv the set of spheres which
containv, the face poset can be reconstructed. It is a goal of this thesis to investigate cocir-
cuit graphs and the corresponding reconstruction and characterization problems. Similar
to tope graphs we will investigate algorithmic solutions for these problems, and it will
turn out that cocircuit graphs can be used as a base for the design of efficient generation
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algorithms of oriented matroids.

The goal to find methods for the generation of oriented matroids up to isomorphism
has lead to the consideration of graph representations, namely tope graphs and cocir-
cuit graphs. The better these graph representations are understood and characterized, the
better they can be used for generation methods. On the other hand, from a more intrinsic
point of view, our understanding of tope graphs and cocircuit graphs will profit from the
investigation of algorithms for reconstruction and generation of oriented matroids.

Main Results

Part I of this thesis discusses the reconstruction and characterization problems of tope
graphs and cocircuit graphs, whereas Part II is devoted to generation methods. Part III
will show some applications, namely the construction of a catalog of oriented matroids
and of complete listings of combinatorial types of point configurations, polytopes, and
hyperplane arrangements. For an overview of the dependencies of the chapters see also
the structure diagram on page xix.

Chapter 0introduces the theory of oriented matroids, presenting the notation, several
axiom systems and results from the theory of oriented matroids which are used in this
thesis. Although there are no new results in this chapter, the presentation and also most of
the proofs have been written for the purpose of introducing the basic material of the thesis,
which also caused a selection of the known results and a discussion from a personal point
of view. Later chapters will depend on Chapter 0 and refer to it whenever necessary.

Part I Reconstruction and Characterization Problems

Chapter 1discusses tope graphs of oriented matroids. We define tope graphs in Sec-
tion 1.1 and address the two main problems considered in Chapter 1, the characterization
problem and the reconstruction problem of tope graphs. The characterization problem is
the problem to decide whether a given graph is the tope graph of some oriented matroid.
The reconstruction problem is the problem to find for a given tope graphG an oriented
matroidM such thatG is the tope graph ofM. The investigation of these problems is
organized as follows.

Section 1.2 reviews some properties of tope graphs which are known from the literature
[FH93] which state that tope graphs can be embedded in some higher-dimensional hyper-
cube such that distances in the tope graph and in the hypercube coincide. These properties
are not sufficient to characterize tope graphs of oriented matroids; in fact, no characteri-
zation of tope graphs is known which can be verified in the graph in polynomial time.

A first main result of this thesis is a connectedness (or separability) property established
in Section 1.3. Consider again the example introduced above, and choose an arbitrary
element f , say f = 4. The sphere arrangementS can be constructed by insertingS4 as
a new sphere inS \ f := {S1, S2, S3}. The regions ofS are obtained from the regions
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in S \ f by dividing some regions, thosecut by S4, into two new regions; the remaining
regions stay unchanged, we call theseuncutregions. Figure 5 shows the uncut regions for
f = 4. Correspondingly, we call a topeX an uncut topeif the sign vector f X, which
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Figure 5: Uncut regions in sphere arrangement (f = 4)

is obtained fromX be reversing the sign inf , is not a tope. We proof that if there exist
uncut topes for some givenf then the subgraph induced in the tope graph by uncut topes
has exactly two connected components. Stated differently, the new elementf separates
the uncut topes in two connected parts which correspond to the− and the+ side of f .
The proof of this connectedness property uses nontrivial inductive arguments and results
from oriented matroid programming, which is an abstraction of linear programming. The
property can be verified easily for a given tope graph (without knowledge of topes as sign
vectors) and is independent from the known properties of tope graphs as we show by an
example. Still, the new result does not lead to a graph theoretical characterization of tope
graphs of oriented matroids, as we can give another example which satisfies the known
tope graph properties (including the connectedness for every elementf ) but is not a tope
graph of an oriented matroid.

Section 1.4 discusses the reconstruction problem for tope graphs which can be solved by
a simple algorithm of Cordovil and Fukuda [CF93]. This algorithm makes it possible to
characterize tope graphs of oriented matroids by use of an algorithmic characterization
of tope sets, which is discussed in the last three sections of Chapter 1. The problem to
decide whether a given setT of sign vectors is the tope set of some oriented matroid
is solved in three steps. A first algorithm due to Fukuda, Saito, and Tamura [FST91]
constructs (in polynomial time) fromT a set of sign vectorsD such that ifT is a set of
topes thenD is the corresponding set of cocircuits. In a second stepD is tested to be the
set of cocircuits of some oriented matroid, which is possible in polynomial time using the
cocircuit axioms of oriented matroids. Finally, we present an algorithm which constructs
the set of topesT ′ from the cocircuitsD . If T is the set of topes of some oriented matroid
thenT = T ′, otherwise the method recognizes that this is not the case. The algorithm for
the construction of topes from cocircuits is proved to be polynomial in the sizes of input
and output; this extended notion of polynomiality [Fuk96, Fuk00a, Fuk01] is used since
the number of topes can be exponential in the number of cocircuits.
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Chapter 2discusses the reconstruction and characterization problems concerning cocir-
cuit graphs. An example of Cordovil, Fukuda, and Guedes de Oliveira [CFGdO00] shows
that the cocircuit graph of an oriented matroid does not characterize the face poset. How-
ever, the question remained open for cocircuit graphs of uniform oriented matroids (which
we will simply call uniform cocircuit graphs), and positive answers are possible when
some information about the oriented matroid is added to the cocircuit graph, as we dis-
cuss in the following using the notion of labels. We define three types of labels:

• An OM-label(oriented matroid label) of a cocircuit graph is a mapL that associates
every vertex in the cocircuit graph to its corresponding cocircuit. In the example
presented above, the vertexC is mapped toL(C) = ( 0 + + 0 ).

• An OM-labelL induces anM-label (matroid label)L which carries the underlying
matroid information only, i.e.,L maps every vertexv to the set of elements which
correspond to 0 signs inL(v). We write this definition asL(v) := L(v)0 for every
vertexv. In the example from above,L(C) = ( 0 + + 0 ) inducesL(C) = {1, 4}.

• An M-label induces anAP-label(antipode label) by mapping every vertexv to the
so-calledantipodev of v which is characterized byL(v) = L(v) andv 6= v. In the
example of above, the vertexC is mapped to its antipodeC.

In addition to labels there is the notion ofcoline cyclesin cocircuit graphs which play
an important role for reconstruction and also later for generation methods. In a sphere
arrangement a coline cycle is the subgraph induced in the cocircuit graph by the 1-
dimensional intersection of a number of spheres. In our example onS2 each coline cycle
is trivially given by the edges belonging to one sphere. In the M-labeled cocircuit graph
of an oriented matroid a coline cycle is the subgraph induced by the edges having same
M-label, where the M-label of an edge is defined as the intersection of the vertex labels of
the two end points; in fact, a coline cycle is always a cycle in the cocircuit graph. Figure 6
shows the M-labeled cocircuit graph and indicates the coline cycles.

{1, 2}

{1, 2}

{1, 3}

{1, 3}

{1, 4}

{1, 4}

{2, 3, 4}

{2, 3, 4}

Figure 6: Coline cycles in M-labeled cocircuit graph
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As a result of Cordovil, Fukuda, and Guedes de Oliveira [CFGdO00] the M-labeled cocir-
cuit graph determines the oriented matroid up to reorientation. We present in Section 2.2
a simple algorithm for the orientation reconstruction from an M-labeled cocircuit graph.
The idea is based on a connectedness property [CFGdO00] which is similar to that dis-
cussed above for tope graphs: letf be an arbitrary element and consider the subgraph
G( f ) induced in the cocircuit graph by the verticesv for which f is not inL(v); then two
verticesv,w are connected inG( f ) if and only if L(v) = L(w) 6= 0 for any OM-label
L that inducesL.

As one of the major results in this thesis we prove that the cocircuit graph of auniformori-
ented matroid determines its isomorphism class. This strengthens the known result that the
isomorphism class is determined by an AP-labeled uniform cocircuit graph [CFGdO00].
We prove the known and the new result providing (polynomial) algorithms which recon-
struct the isomorphism class in several steps. The reconstruction of an oriented matroid
from a given M-labeled cocircuit graph has been considered above. Section 2.3 presents
two algorithms, one for the reconstruction of an M-label of a uniform cocircuit graph
from the set of colines cycles, a second which finds the set of colines cycles from an
AP-label. In Section 2.4 we show how an AP-label of a given uniform cocircuit graph
can be constructed in polynomial time. A first important result is that an AP-label of a
uniform cocircuit graph is determined by only two pairs of antipodal vertices which are
known to be on a common coline cycle. The main theorem states that the AP-label of
a uniform cocircuit graphG is determined byG up to graph automorphisms. The proof
of this theorem considers the automorphism group Aut(G) and is based on the previous
reconstruction results of Chapter 2.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization).

The results of Chapter 2 are also related to Perles’s conjecture which says that the
1-skeleton of a simpled-dimensional polytope determines its face poset; this conjec-
ture was first proved by Blind and Mani-Levitska [BML87] and then constructively by
Kalai [Kal88]. If an oriented matroid is realizable, the cell complexK formed byF is
isomorphic to the face poset of the dual of a zonotope (zonotopes are polytopes which are
projections of higher-dimensional hypercubes), i.e., the present work extends the discus-
sion of Perles’s conjecture to a class of non-simple polytopes. Joswig [Jos00] conjectured
that every cubical polytope (i.e., every(d − 1)-dimensional face is isomorphic to a hyper-
cube) can be reconstructed from its dual graph; our result proves this conjecture for the
special case of cubical zonotopes up to graph isomorphism. In other words, the face poset
of every cubical zonotope is uniquely determined by its dual graph up to isomorphism.

Part II Generation Methods

Chapter 3introduces the generation problem of oriented matroids and presents an incre-
mental method for the generation of isomorphism classes. In this incremental method
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oriented matroids are generated by single element extensions, i.e., oriented matroids are
extended to new oriented matroids by introducing one element after the other. This ap-
proach is the one also used in former methods [BS87, BS89, BGdO00]. New is that we
use tope graphs and cocircuit graphs and that all oriented matroids in arbitrary dimension
are considered. Single element extensions are represented in tope graphs and cocircuit
graphs by signatures on the vertex sets, so-calledlocalizations. Consider again the ex-
ample of above. The sphere arrangementS is obtained fromS \ f as a single element
extension by addingSf . This defines localizations of the vertex sets of the tope graph and
cocircuit graph ofS \ f as follows. In the tope graph, every vertex which corresponds to
a region that is divided byf into two new regions is labeled by a 0 sign, the other vertices
by a− or + sign according to whether the corresponding regions are on the− or + side
of f . In the cocircuit graph, every vertex takes a−, +, or 0 sign according to whether it
is on the− or + side of f or contained inf . Figure 7 shows the localizations in the tope
graph and cocircuit graph ofS \ f for the above example andf = 4.

AB DABD
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Figure 7: Localizations of tope graph and cocircuit graph

Chapter 4presents generation methods that are based on tope graphs. Section 4.1 dis-
cusses the strong relation between automorphisms of tope graphs and isomorphisms in
oriented matroids and presents an algorithm for testing isomorphisms of tope graphs. Sec-
tion 4.2 gives a formal definition of localizations of tope graphs and discusses the relation
to single element extensions and properties of localizations. We use the connectedness of
uncut topes from Chapter 1 to prove that for any tope graphG and localizationσ of G
the subgraph inG induced by the verticesv with σ(v) = − is connected. This property
is essential for the design of two algorithms in Sections 4.3 and 4.4 for the generation of
localizations. Both methods generate a superset of localizations, so-calledweak localiza-
tions; every weak localization can be tested for being a localizations using the characteri-
zation algorithms from Chapter 1. The first algorithm is a reverse search method [AF96]
which generates every weak localization once without repetition. The second algorithm
incorporates isomorphism tests in order to reduce the amount of enumeration as we are
only interested in generating oriented matroids up to isomorphism. Both methods are new
methods for the generation of oriented matroids and not similar to any of the known meth-
ods. However, they turn out to be of limited use in practice. It seems that the absence of
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a good characterization of localizations in tope graphs causes these methods to become
inefficient as the number of elements increases. Hence these methods will not be used for
the generation of oriented matroids in practice.

Chapter 5presents generation methods based on the cocircuit graph of oriented matroids.
In contrast to tope graphs, cocircuit graphs do not characterize isomorphism classes of
oriented matroids. However, the results of Chapter 2 show that an M-labeled cocircuit
graph, whose M-label is considered up to relabeling, characterizes the isomorphism class
of the corresponding oriented matroid. This representation is useful in Section 5.1 where
we discuss the relation between automorphisms of cocircuit graphs and isomorphisms of
oriented matroids and where we present an algorithm for testing isomorphisms of cocir-
cuit graphs. Section 5.2 formally defines localizations of cocircuit graphs and discusses
the relation to single element extensions. The connectedness result which was already
helpful for the orientation reconstruction in Chapter 2 is used for designing two genera-
tion algorithms based on cocircuit graphs which are similar to those for tope graphs in
Chapter 4. The signatures produced by these algorithms form a superset of all localiza-
tions of a cocircuit graph, which are characterized by the following result of Las Vergnas
[LV78b]: a signature is a localization of a cocircuit graph (given with a set of coline cy-
cles) if and only if for every coline cycle the induced signature is of one of the three types
given in Figure 8. This characterization is used in Section 5.4 for the design of an effi-
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0

Type I

−
−
−

−0+
+
+
+

0
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−
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−−+
+
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+ +

Type III

Figure 8: Signatures on coline cycles induced by a localization

cient generation method. This method is basically a backtracking algorithm which fixes
signatures on coline cycles one after the other, where all possibilities according to the
above characterization are considered as long as there is no conflict with previously fixed
patterns of coline cycles. It turned out that our method is similar to a method of Bokowski
and Guedes de Oliveira [BGdO00] for the uniform case. However, our method is more
general as it is capable to handle all oriented matroids in arbitrary rank, including non-
uniform oriented matroids. Furthermore, our method introduces two new concepts which
are important for practical efficiency. First, the backtracking algorithm uses adynamic
orderingof the coline cycles in order to reduce the amount of enumeration. Second, the
algorithm uses acoline adjacency matrixwhich reflects the mutual intersection of coline
cycles; by this the amount of time spent for one step in the backtracking method becomes
very small. Computational experiments show that our method generates only relatively
few infeasible situations where a partial assignment of patterns to coline cycles cannot be
completed to a localization, which finally explains its practical efficiency.
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Part III Applications

Chapter 6presents a catalog of oriented matroids up to isomorphism whose computation
is based on the methods presented earlier in this thesis. We discuss the organization of the
catalog which uses basis orientations (chirotopes) for the encoding of the representative of
every isomorphism class. Furthermore a method is presented which generates the catalog.
Finally we give an overview of the results, also indicating CPU time usage and memory
usage. We consider this catalog to be a major step forward as it is the first such catalog
which includes not only uniform oriented matroids but all cases in arbitrary dimension.

Chapter 7discusses how the catalog of oriented matroids from Chapter 6 can be used
for the generation of complete listings of the combinatorial types of point configurations,
so-calledorder types[GP83]. Figure 9 shows an example of such a list; see Figures 7.4
and 7.5 for the analogous listings with 5 and 6 points. These listings are the first such

Figure 9: The 3 order types with 4 non-collinear points inR2

listings which also include degenerate point configurations. We use these listings for an
alternative proof of the classifications of polytopes [Gr¨u67, AS84, AS85] and show their
potential in resolving geometric conjectures.

Chapter 8considers the problem of generating all combinatorial types of hyperplane ar-
rangements, which we calldissection types. Figure 10 shows an example of such a list;

Figure 10: The 3 dissection types with 3 non-parallel hyperplanes inR2

for arrangements with of more lines see Figures 8.3 and 8.4. We give complete listings
which again are first of this kind as they include all degenerate cases. We consider these
listings to be an interesting source for future investigations.

The catalogs of oriented matroids, point configurations, and hyperplane arrangements are
available online onhttp://www.om.math.ethz.ch .



What’s in a name?
ROMEO AND JULIET (2,2)

Chapter 0

An Introduction to Oriented Matroids

0.1 A First Tour of Oriented Matroids

Oriented matroidscan be viewed as an axiomatic combinatorial abstraction of geometric
structures such as real hyperplane arrangements, convex polytopes, or point configura-
tions in the Euclidean space. This abstraction reflects properties like linear dependencies,
facial relationship, convexity, duality, and optimization issues, and by this oriented ma-
troids have become an indispensable tool in discrete and computational geometry. Fur-
thermore, the theory of oriented matroids has connections and applications to many areas
of mathematics. A most comprehensive presentation can be found in the monograph of
Björner, Las Vergnas, Sturmfels, White, and Ziegler [BLVS+99]. For the present thesis
the introduction of the following pages will be sufficient. Readers who are already famil-
iar with oriented matroids may read this chapter in parts; later chapters will refer to this
Chapter 0.

We start this first tour of oriented matroids with a look at thename. The notion “matroid”
was first used by Whitney [Whi35], created from “matrix” by adding the suffix “-oid”,
hence meaning “resembling of a matrix” or “having the form of a matrix”. Let us consider
the following matrix:

A =

 0 0 1 −1

1 0 0 0
1 1 1 1




There are several ways to see the matroid structure defined byA. One way is to consider
the four column vectors

A1 =

 0

1
1


 , A2 =


 0

0
1


 , A3 =


 1

0
1


 , A4 =


 −1

0
1




as vectors inR3 and study their linear (in-)dependence as follows: the linear subspace
generated byA3 andA4 containsA2, but notA1; in other words,A1 is linear independent
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from {A3, A4}, but notA2. We call the index set{2, 3, 4} aclosed subsetor aflat. The set
A of all flats, in the case of our example

A = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4}, {2, 3,4}, {1, 2, 3,4}},
defines a matroid (see also Section 0.3). For every flatX ∈ A different from the full index
setE := {1, 2, 3, 4} the subspace spanned by the vectorsAe, e ∈ X, is contained in some
2-dimensional subspaceHX of R3. This hyperplaneHX can be chosen such thatAe ∈ HX

if and only if e ∈ X (in general there are many choices forHX). ObviouslyHX can be
described by a normal vectorx ∈ R3. Thene ∈ X if and only if x andAe are orthogonal.
If we definey0 := {e | ye = 0} for a vectory, then the above considerations lead to

A = {(AT x)0 | x ∈ R3}
(note thatE corresponds tox being the zero vector). This description ofA, i.e., of the
matroid, is easily extended to anorientedabstraction of the spacial dependencies ofA1,
. . . , A4: For every hyperplane, i.e., for everyx ∈ R3, we also consider forAT

e x 6= 0
whether AT

e x < 0 or AT
e x > 0, i.e., whether sign(AT

e x) = − or sign(AT
e x) = +.

Defining sign vectors sign(y) componentwise, the set of sign vectors

F (A) = {sign(AT x) | x ∈ R3}
gives a description of all these “oriented dependencies” of the column vectors ofA. We
call (E,F (A)) the oriented matroid defined by Aand a sign vector inF (A) a covector.
For the example of the matrixA given above, Table 0.1 shows the complete list of cov-
ectors inF (A), grouped together by dimension of the linear subspaces defined by the
corresponding flats.

Dimension 0

+ + − + − − + −
− + − + + − + −
+ − − + − + + −
− − − + + + + −
+ + + + − − − −
− + + + + − − −

Dimension 1

0 + − + 0 − + −
0 − − + 0 + + −
+ 0 − + − 0 + −
− 0 − + + 0 + −
0 + + + 0 − − −
+ + 0 + − − 0 −
− + 0 + + − 0 −
+ + + 0 − − − 0
− + + 0 + − − 0

Dimension 2

0 0 − + 0 0 + −
0 + 0 + 0 − 0 −
0 + + 0 0 − − 0
+ 0 0 0 − 0 0 0

Dim. 3

0 0 0 0

Table 0.1: List of covectors inF (A)

Instead of studying the relative positions of the vectorsAe w.r.t. oriented hyperplanes
which are defined by normal vectorsx ∈ R3, we consider now thecentral hyperplane
arrangement{H1, . . . , H4} defined by takingAe as the normal vector ofHe for e ∈ E.
Each hyperplaneHe is oriented, whereAe points to the+ side. Then every pointx ∈ R3

defines a sign vectorX ∈ {−,+, 0}E by its relative position in the arrangement, i.e.,
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Xe = 0 if x is contained inHe, Xe = + if x is on the+ side of He, and Xe = −
otherwise. ObviouslyXe = sign(AT

e x), and the set of all sign vectors obtained in this
way is exactly the setF (A) of covectors as defined above.

Before we illustrate sets of covectors likeF (A) further using other geometrical models,
we have closer look at the properties ofF (A). It is obvious that forx being the zero
vector,0 := ( 0 . . . 0 ) = sign(AT x) ∈ F (A). Furthermore, replacing anyx by −x
shows thatX ∈ F (A) implies−X ∈ F (A), where−X denotes the sign vector obtained
by reversing all signs in the obvious way. Slightly more advanced, we may consider
linear combinations of vectorsx, y. For arbitrary smallε considerz := x + εy and the
corresponding sign vectorsX := sign(AT x), Y := sign(AT y), andZ := sign(AT z), then
for e ∈ E

Ze = sign(AT z)e = sign(AT x + εAT y)e =
{

sign(AT x)e = Xe if Xe 6= 0,
sign(AT y)e = Ye otherwise.

This proves that forX,Y ∈ F (A) also the sign vectorZ = X ◦ Y belongs toF (A),
where we defineZ := X ◦ Y by Ze = Xe if Xe 6= 0 andZe = Ye otherwise. We call
X ◦ Y thecompositionof X andY. Finally consider two vectorsx, y which are separated
by (at least) one hyperplaneHe, i.e., Xe = −Ye 6= 0 for the corresponding two sign
vectorsX,Y ∈ F . We say thate separates X and Yand denote byD(X,Y) the set of all
elements which separateX andY. Let z denote the intersection point ofHe and the line
connectingx andy. Then the corresponding sign vectorZ := sign(AT z) ∈ A satisfies
Ze = 0 andZ f = (X◦Y) f for all non-separating elementsf . Let us list all the properties
which we found satisfied byF := F (A):

(F0) 0 ∈ F .

(F1) If X ∈ F then also−X ∈ F .

(F2) If X,Y ∈ F then alsoX ◦ Y ∈ F .

(F3) If X,Y ∈ F ande ∈ D(X,Y) then there existsZ ∈ F such thatZe = 0 and
Z f = (X ◦ Y) f for all f ∈ E \ D(X,Y).

In the theory of oriented matroids the properties (F0) to (F3) play the role ofaxioms: An
oriented matroidis defined as a pairM = (E,F ) of a finite setE andF ⊆ {−,+, 0}E

which satisfies (F0) to (F3). The notion of oriented matroids was introduced in the
late seventies independently by Bland and Las Vergnas [BLV78] and by Folkman and
Lawrence [FL78]. In fact, there are several equivalent axiom systems of oriented ma-
troids some of which we will introduce in the following sections.

An immediate question is whether all oriented matroids (as defined by (F0) to (F3)) have a
realization(as given by a matrixA or a central hyperplane arrangement). The answer was
found to be that this is not the case, and it is known that the problem to decide whether
an oriented matroid is realizable (also calledlinear) or not isNP-hard [Mnë88, Sho91].
As the axioms of oriented matroids can be checked in polynomial time, there is not poly-
nomial characterization of realizable oriented matroids unlessP = NP. By this, the
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abstraction of oriented matroids is of great importance also for the study of the realizable
cases. Furthermore, the realization problem is decidable and there are practical methods
which work satisfactory for smaller instances, at least in the uniform case [RG92].

Will see in the following how oriented matroids can be illustrated using a geometric (or
topological) model. The intersection of a central hyperplane arrangement{He | e ∈ E}
with the unit ball centered at origin defines asphere arrangementS = {Se | e ∈ E},
where again every sphereSe is oriented (as induced by the corresponding hyperplaneHe).
The sphere arrangement defined by the above example is illustrated in Figure 0.1. The

A1

A2

A3

A4

S1

S2

S3
S4

Figure 0.1: Sphere arrangement

sphere arrangementS induces a cell complexK on the unit sphereSd. Every pointx on
Sd defines a sign vectorX ∈ {−,+, 0}E by Xe = 0 if x is on Se, otherwiseXe = +
(or Xe = −) if x is on the+ side (or− side, respectively) ofSe; let F (S) denote the
set of all these sign vectors. It is not difficult to see that ifS is induced by a central
hyperplane arrangement defined by a matrixA as above, thenF (S) = F (A) \ {0}.
Hence sphere arrangements give again an illustration of sets of covectorsF (A) or F (S).
More general, apseudosphere arrangementS = {Se | e ∈ E} in the Euclidean space
Rd+1 is a collection of(d−1)-dimensional topological spheres on thed-dimensional unit
sphereSd, where every sphereSe is oriented (i.e.,Se has a+ side and a− side) and the
intersection properties of the topological spheres are as in a (linear) sphere arrangement,
e.g., the intersection of any number of spheres is again a sphere and the intersection of an
arbitrary collection of closed sides is either a sphere or a ball (for details see Definition
5.1.3 in [BLVS+99]). As for (linear) sphere arrangements, a pseudosphere arrangement
S induces a cell complexK and a set of sign vectorsF (S) which satisfies (F0) to (F3).
The so-calledTopological Representation Theoremof Folkman and Lawrence [FL78] and
its simplification by Mandel [Man82] assure that also the converse is true: For every set
F of sign vectors which satisfies (F0) to (F3), there exists a pseudosphere arrangementS
such thatF (S) = F \ {0}. We illustrate in Figure 0.2 how a pseudosphere arrangement
may look (again for the same set of covectors as above).
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Figure 0.2: Pseudosphere arrangement

Sphere arrangements (or pseudosphere arrangements) of corresponding cell complexesK
are very helpful illustrations of many considerations concerning oriented matroids. Ob-
viously there is a one-to-one correspondence between the cells inK and the sign vectors
in F (S). We list this correspondence for our example in Table 0.2 (see Figure 0.2 for the
naming of the cells). The relationship of faces in the cell complexK can be read easily

Dimension 0

A 0 0−+ A 0 0+−
B 0+ 0+ B 0− 0−
C 0++ 0 C 0−− 0
D + 0 0 0 D − 0 0 0

Dimension 1

AB 0+−+ AB 0−+−
AC 0−−+ AC 0++−
AD + 0−+ AD − 0+−
AD − 0−+ AD + 0+−
BC 0+++ BC 0−−−
B D ++ 0+ BD −− 0−
BD −+ 0+ BD +− 0−
C D +++ 0 CD −−− 0
CD −++ 0 C D +−− 0

Dimension 2

AB D ++−+ ABD −−+−
ABD −+−+ ABD +−+−
AC D +−−+ ACD −++−
ACD −−−+ AC D +++−
BC D ++++ BCD −−−−
BCD −+++ BC D +−−−

Table 0.2: Faces and corresponding sign vectors

from the sign patterns inF : e.g., we see thatAB is a face ofAB D since all nonzero
signs of( 0 + − +) are the same in(+ + − + ), the covectors corresponding toAB and
AB D. This gives rise to the following definition: For two covectorsX,Y ∈ F we say
that X is a face of Yor X conforms to Y(denoted byX � Y) if Xe 6= 0 impliesXe = Ye.
The setF ordered by the facial relation�, with the zero vector0 as smallest element and
an additional artificial greatest element1, forms a latticeF̂ , the so-calledbig face lattice
(see Figure 0.3). The big face latticêF coincides with the face lattice of the cell complex
K, and if we define rank(X) by the height of a faceX in F̂ , then rank(X)− 1 equals the
dimension of the corresponding facet inS.

The big face latticeF̂ can be considered as a representation of thecombinatorial typeof
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0

A B C D D C B A

AB AD AD AC BC BD BD CD CD C D CD BD BD BC AC AD AD AB

ABD ABD AC D AC D BCD BCD BC D BCD ACD ACD ABD ABD

1

Figure 0.3: The big face latticêF

K or the corresponding oriented matroid. Renaming (orrelabeling) the elements ofE, or
reorientingthe elements, i.e., interchanging+ and− side, does not affect the face lattice.
This remains true if we consider the notionrelabelingin a more general sense than usual:
elementse, f which are identical (i.e.,Xe = X f for all X ∈ F ) can be replaced by one
representing element, or similarly elements can be doubled; furthermore one may delete
(or introduce) elementsewhich are constantly 0 (i.e.,Xe = 0 for all X ∈ F ). We will see
later (in Chapter 1) that the big face lattice is sufficient to reconstruct an oriented matroid
up to labeling and orientation. In formal language, relabeling of an oriented matroid
M defines itsrelabeling classLC(M), reorientation itsreorientation classOC(M), and
relabeling and reorientation itsisomorphism classIC(M). Two oriented matroids are
isomorphic if and only if they have the same face lattices.

We have seen that matrices define not only matroids but also oriented matroids, and from
this we developed geometric interpretations and models such as central hyperplane ar-
rangements and sphere arrangements, which stand for realizable oriented matroids. Fur-
thermore, every oriented matroid can be represented by some pseudosphere arrangement.
There are more geometric objects such as point configurations or affine hyperplane ar-
rangements (see also the last two chapters of this thesis) whose combinatorial abstractions
lead to (realizable) oriented matroids. In fact, in the history of oriented matroids such ob-
jects which we used for illustration or as a representation of oriented matroids were the
starting point and the motivation for the definition and investigation of axioms systems
such as the covector axioms (F0) to (F3). These investigations have shown that many
of the objects of study have mutual interpretations under which axiom systems become
equivalent. By this, seemingly different objects have been found to be part of one theory,
which we callthe theory of oriented matroids. We will develop in the following some
aspects of this theory, also showing several axiom systems and their equivalence.
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0.2 Covector Axioms

The combinatorial abstractions of the geometric examples in the previous Section 0.1
showed a number of elementary properties. In this section we take such elementary prop-
erties as the set of axioms of the theory of oriented matroids which will be developed
in the following. The axioms which we use in this section for the definition of oriented
matroids have been studied jointly by Edmonds, Fukuda, and Mandel [Fuk82, Man82]
which proved their equivalence with the cocircuit axioms [BLV78]. We have chosen the
other direction and will introduce cocircuit axioms later (see Section 0.6).

Let E denote a finite set, e.g.,E = {1, 2, . . . , n}. We callE the ground setande ∈ E an
element. In the examples of Section 0.1 these elements correspond to the hyperplanes in
central hyperplane arrangements or spheres in sphere arrangements. As before, a vector
X ∈ {−,+, 0}E is calleda sign vectoron E; we may not mention the ground setE if it is
determined from the context, e.g., we denote by0 := ( 0 0 · · · 0 ) ∈ {0}E the sign vector
with all signs equal to zero. ForS ⊆ E we denote byXS the sign vector in{−,+, 0}S

obtained fromX by (XS)e := Xe for e ∈ S, and similarlyX\Sdenotes the subvector ofX
on E \ S. We will write X \e for X \{e} etc. where convenient. Thenegative−X of a sign
vector X is defined by(−X)e := −Xe for e ∈ E, where−(− + 0 ) = (+ − 0 ). For
S ⊆ E let S X denote the sign vector onE with ( S X)S = −XS and( S X) \ S = X \ S.
Thesupportof a sign vectorX ∈ {−,+, 0}E is the setX := {e ∈ E | Xe 6= 0}, and its
complementX0 := {e ∈ E | Xe = 0} is called thezero supportof X. Furthermore call
the setsX+ := {e ∈ E | Xe = +} and X− := {e ∈ E | Xe = −} the positive support
and thenegative support, respectively. For two sign vectorsX andY on E we define the
compositionof X andY (denoted byX ◦ Y) as before by

(X ◦ Y)e :=
{

Xe if Xe 6= 0,
Ye otherwise,

so, e.g.,(− − − + + + 0 0 0) ◦ (− + 0 − + 0 − + 0 ) = (− − − + + + − + 0 ).
Note that the composition◦ is associative, i.e.,(X ◦ Y) ◦ Z = X ◦ (Y ◦ Z), but not
symmetric:X ◦ Y = Y ◦ X if and only if D(X,Y) := {e ∈ E | Xe = −Ye 6= 0} = ∅; for
e ∈ D(X,Y), we say thatX and Y disagree in eor e separates X and Y.

The following definition of an oriented matroid was already given in Section 0.1:

0.2.1 Definition (Covector Axioms of Oriented Matroids) An oriented matroidM is a
pair (E,F ) of a finite setE and a setF ⊆ {−,+, 0}E of sign vectors (calledcovectors)
for which the followingcovector axioms(F0) to (F3) are valid:

(F0) 0 ∈ F .

(F1) If X ∈ F then−X ∈ F . (symmetry)

(F2) If X,Y ∈ F thenX ◦ Y ∈ F . (composition)

(F3) For allX,Y ∈ F ande ∈ D(X,Y)
there existsZ ∈ F such that
Ze = 0 and
Z f = (X ◦ Y) f for all f ∈ E \ D(X,Y). (covector elimination)
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The facial relationship (e.g., in sphere arrangements) is abstracted as follows: For two sign
vectorsX,Y ∈ {−,+, 0}E we say thatX conforms to Y(or X is a face of Y), denoted by
X � Y, if Xe 6= 0 impliesXe = Ye, e.g.,( 0 + − 0 ) conforms to( 0 + − +) but not to
( 0 + + +); in addition we writeX ≺ Y if X � Y andX 6= Y.

The covector elimination axiom (F3) can be replaced by weaker and stronger variants.
Actually, there are many such variations of the axioms known from the literature, and
they are very helpful for the proofs of the statements which follow later. Our formulations
(F3c) and (F3w) follow Fukuda [Fuk82, Fuk00b] and are also closely related to the so-
calledY-approximation of X[Man82] (see also Proposition 3.7.10 in [BLVS+99]) and to
thestrong vector elimination[BLV78, Man82] (see also Theorem 3.7.5 in [BLVS+99]),
respectively.

0.2.2 Proposition LetF ⊆ {−,+, 0}E be a set of sign vectors satisfying(F0), (F1), and
(F2). Then the three statements(F3), (F3c), and(F3w) are equivalent, where

(F3c) For all X,Y ∈ F and∅ 6= S ⊆ D(X,Y)
there existe ∈ SandZ ∈ F such that
Ze = 0 and
ZS � XS and
Z f = (X ◦ Y) f for all f ∈ E \ D(X,Y). (conformal elimination)

and

(F3w) For all X,Y ∈ F ande ∈ D(X,Y) and f ∈ X \ D(X,Y)
there existsZ ∈ F such that
Ze = 0 and
Z f = X f and
Zg ∈ {Xg,Yg, 0} for all g ∈ E. (weak elimination)

Proof Let F ⊆ {−,+, 0}E be a set of sign vectors satisfying (F0), (F1), and (F2). We
will show (F3)⇒ (F3c) ⇒ (F3w) ⇒ (F3), where the implication (F3c) ⇒ (F3w) is obvious
with S = {e}.
Assume that (F3) is satisfied and show (F3c). Let beX,Y ∈ F and∅ 6= S ⊆ D(X,Y)
and prove the claim by induction on|S|: For |S| = 1, (F3c) follows directly from (F3).
For the inductive step assume|S| > 1 and that (F3c) is satisfied for all∅ 6= S′ ⊆ D(X,Y)
with |S′| < |S|. Choose anye ∈ Sand setS′ := S\ e. By induction there existsZ′ ∈ F
such thatZ′

S′ � XS′ and Z′
f = (X ◦ Y) f for all f ∈ E \ D(X,Y). If e 6∈ D(X, Z′)

then Z := Z′ is sufficient to prove (F3c). Otherwise apply (F3) toX, Z′, ande: There
existsZ ∈ F such thatZe = 0 andZ f = (X ◦ Z′) f for all f ∈ E \ D(X, Z′). Remark
that ZS � XS follows by Ze = 0 � Xe and ZS′ = XS′ (since Z′

S′ � XS′ implies
S′ ⊆ E \ D(X, Z′), thereforeZS′ = (X ◦ Z′)S′ = XS′, where the last equality follows
from S′ ⊆ D(X,Y) ⊆ X). Finally, f ∈ E \ D(X,Y) implies thatZ′

f = (X ◦ Y) f ,
therefore alsof ∈ E \ D(X, Z′) andZ f = (X ◦ Z′) f = (X ◦ Y) f .
Assume that (F3w) is satisfied and show (F3). Let beX,Y ∈ F ande ∈ D := D(X,Y).
For all f ∈ X \ D let be Z f ∈ F such thatZ f

e = 0 andZ f
f = X f and for allg ∈ E
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is Z f
g ∈ {Xg,Yg, 0}. Similarly for f ∈ Y \ D let be Z̃ f ∈ F such thatZ̃ f

e = 0 and

Z̃ f
f = Yf and Z̃ f

g ∈ {Xg,Yg, 0} for all g ∈ E. Let Z ∈ F denote a covector which is the

composition (in some arbitrary order) of all theseZ f and Z̃ f ; if X ⊆ D andY ⊆ D then
X = −Y andZ := 0 is sufficient. ObviouslyZe = 0. Considerg ∈ E\ D and f ∈ X\ D.
If Z f

g 6= (X ◦ Y)g thenZ f
g = 0. Similarly for f ∈ Y \ D, if Z̃ f

g 6= (X ◦ Y)g thenZ̃ f
g = 0.

Forg ∈ X ∪Y\ D this impliesZg = Zg
g = Xg = (X ◦Y)g or Zg = Z̃g

g = Yg = (X ◦Y)g.

For g ∈ X0 ∩ Y0 we concludeZ f
g = 0 for all f ∈ X \ D and Z̃ f

g = 0 for all f ∈ Y \ D,
henceZg = (X ◦ Y)g = 0 for all g ∈ E \ D.

0.3 Matroids

We have started the first tour of oriented matroids in Section 0.1 with matroids, which can
be viewed as an abstraction of linear dependencies of vectors. This section introduces ax-
ioms of matroids and discusses fundamental notions such as independent sets, bases, and
rank in matroids. It will be straightforward to extend these notions to the context of ori-
ented matroids as every oriented matroid defines a matroid when omitting the orientations
of signs. A more comprehensive introduction to matroids can be found in the monographs
of Welsh [Wel76] and Oxley [Oxl92].

0.3.1 Definition (Matroid Flat Axioms) A matroid M is a pair(E,A) of a finite setE
and a setA ⊆ 2E of subsets ofE (calledflatsor closed sets) for which the followingflat
axioms(M1) to (M3) are valid:

(M1) E ∈ A.

(M2) If X,Y ∈ A thenX ∩ Y ∈ A. (intersection)

(M3) For all X,Y ∈ A, e ∈ E \ (X ∪ Y), and f ∈ X \ Y
there existsZ ∈ A such thate ∈ Z, f 6∈ Z, andX ∩ Y ⊆ Z. (exchange)

The matroid flat axioms are satisfied by any setsA as defined by matricesA in Section 0.1:
a flat X ∈ A is a subset of column indices of a given matrixA such that the subspace
spanned by the column vectorsAe, e ∈ X, does not contain anyA f with f 6∈ X.

The study of the relation of oriented matroids and their underlying matroids is as old as
the notion of oriented matroids (e.g., see [FL78]):

0.3.2 Proposition Let M = (E,F ) be an oriented matroid. Then(E, {X0 | X ∈ F }) is
a matroid.

Proof Let M = (E,F ) be an oriented matroid and setA := {X0 | X ∈ F }. It is obvious
that (M1) and (M2) follow directly from (F0) and (F2). In order to show (M3) let be
X,Y ∈ F such that there existe ∈ E \ (X0 ∪ Y0) and f ∈ X0 \ Y0. We can assume that
Xe = −Ye 6= 0 (otherwise replaceY by −Y), soe ∈ D(X,Y) and f ∈ E \ D(X,Y). By
(F3) there existsZ ∈ F such thatZe = 0 andZg = (X ◦ Y)g for all g ∈ E \ D(X,Y),
especiallyZ f = (X ◦ Y) f = Yf 6= 0 andX0 ∩ Y0 ⊆ Z0. This shows thatZ0 ∈ A
satisfies the flat axiom (M3) forX0, Y0, e, and f .
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0.3.3 Definition (Underlying Matroid) Let M = (E,F ) be an oriented matroid and set
A := {X0 | X ∈ F }. Then we call the matroid(E,A) the underlying matroid ofM,
denoted byM.

A matroid is calledorientableif it is the underlying matroid of an oriented matroid. There
exist matroids which are not orientable, and the question whether a matroid is orientable
or not isNP-complete [RG99]; for details we refer to Sections 6.6 and 7.9 of [BLVS+99].

The first fundamental notion of the theory of matroids is thespanoperation. For matroids
as introduced in Section 0.1, where a given matrixA defines a set of flatsA, the span of a
some subsetS ⊆ E of column indices is the set of indices whose corresponding column
vectors are contained in the subspace spanned by the vectors according toS.

0.3.4 Definition (Span) Let M = (E,A) be a matroid andS ⊆ E a subset ofE. The set

spanM(S) :=
⋂

X ∈ A
S ⊆ X

X

is calledthe span of S in M. Usually, if M is defined from the context, we writeS for
spanM(S).

0.3.5 Lemma Let M = (E,A) be a matroid and S⊆ E. Then

(i) S ∈ A, (flat)

(ii) S ⊆ S, (hull)

(iii) S = S, and (closure)

(iv) S ⊆ R for all S⊆ R ⊆ E. (monotonicity)

Proof Let M = (E,A) be a matroid. Properties (i) and (ii) follow by definition, where
for (i) also the matroid intersection axiom (M2) is important. For (iii) observe that by (i)

and the definition followsS ⊆ S, where (ii) impliesS ⊆ S. Finally considerS ⊆ R ⊆ E:
If X ∈ A satisfiesR ⊆ X then alsoS ⊆ X, hence by definitionS ⊆ R.

The definition of the span operation can be used for the definition ofindependent setsand
basesof matroids. Again, using the relation of matrices and matroids as discussed before,
independent sets and bases of column vectors nicely illustrate the corresponding notions
in matroids.

0.3.6 Definition (Independent Sets, Bases)Let M = (E,A) be a matroid. A setS ⊆ E
is calledindependentor an independent set of Mif S\ e 6= S for all e ∈ S. For any set
S ⊆ E we call a subsetB ⊆ S a basis of Sif B is a maximal independent subset ofS. A
basis ofE is also calleda basis of M, and the set of all bases ofM is denoted byB.

0.3.7 Lemma Let M = (E,A) be a matroid and S⊆ E.
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(i) S is an independent set of M if and only ifS\ e ⊆ S\ e for all e∈ S.

(ii) S is an independent set of M if and only if for every e∈ S there exists X∈ A such
that S\ e ⊆ X 63 e.

(iii) Every subset of an independent set is independent.

(iv) Let S be an independent set and e∈ E \ S. Then S∪ e is independent if and only if
e 6∈ S.

(v) For S ∈ A and B an independent subset of S, B is a basis of S if and only ifB = S.

(vi) There exists a basis B ofS such that B⊆ S. For any S⊆ T ⊆ E there exists a
basis B′ of T such that B⊆ B′ ⊆ T .

Proof For (i) considerS ⊆ E ande ∈ S. The monotonicity of the span operator (see
Lemma 0.3.5) impliesS\ e ⊆ S, and furthermoree ∈ S\ e would imply S ⊆ S\ e and
henceS = S\ e. Therefore the claim follows by the definition of an independent set.
For (ii) consider (i) and the definition of an independent set: IfS is independent then
X := S\ e is sufficient; otherwiseS\ e = S for somee ∈ S, which contradicts the
existence ofX ∈ A such thatS\ e ⊆ X 63 e.
For (iii) considerR ⊆ S, whereS is an independent set ofM. Using (i) and Lemma 0.3.5,
R \ e ⊆ S\ e ⊆ S\ e for everye ∈ S, so R \ e ⊆ R \ e for everye ∈ R ⊆ S, i.e., R is
independent.
For the proof of (iv) letS be independent ande ∈ E \ S. If e ∈ S thenS∪ e = S (see
Lemma 0.3.5 and the definition of the span), i.e.,S ∪ e is not independent. Otherwise
e 6∈ S. Show thatS∪ e is independent, i.e.,(S∪ e) \ f ⊆ S∪ e \ f for all f ∈ S∪ e.
Obviously this is true forf = e, so considerf ∈ S. Because off 6∈ S\ f we can apply
(M3) to X := S, Y := S\ f , e, and f : There existsZ ∈ A such thate ∈ Z, f 6∈ Z, and
X ∩ Y = S\ f ⊆ Z. This implies(S∪ e) \ f ⊆ Z 63 f and by this the claim.
Assume thatS ∈ A and B ⊆ S is an independent set. By Lemma 0.3.5B ⊆ S = S.
(iv) implies thatB be can be extended withinS to a larger independent set if and only if
S\ B 6= ∅, which proves (v).
The proof of (vi) follows by use of (iv): SetB0 := ∅ ⊆ S. If B0 = S then isB0 a basis of
SasB0 is obviously independent. OtherwiseB0 $ S, so we can setB1 := B0∪e ⊆ S for

somee ∈ S\ B0; B1 is independent by (iv). IfB1 = S then isB1 a basis ofS. Otherwise
repeat the same argument: fori = 1, 2, . . . setBi+1 := Bi ∪ e ⊆ S for anye ∈ S\ Bi ;
obviously this process has to stop for somei ≤ |S|, thenBi = SandB := Bi is a basis of
S. If S 6= T we extendB in the same way to a basisB′ of T , and obviouslyB ⊆ B′ ⊆ T .

In the proof of Lemma 0.3.7 (vi) a basis of a setS ⊆ E was constructed incrementally
by extending an independent subsetBi of S by an arbitrary elemente ∈ S \ Bi . Such
methods which incrementally construct a “solution” by augmenting a “partial solution”,
namely by adding any element which satisfies some (simple) criterion, are calledgreedy
methods. It is remarkable that problems which allow greedy methods can be characterized
as having a matroid structure.
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The following basis exchange property is important for the basis cardinality theorem,
which will us allow to define the rank of a flat, furthermore it introduces an adjacency re-
lation of bases and the corresponding operation to move from one basis to a neighboring
basis, which is called apivot operation. Basis adjacency is not only important in proofs
(e.g., when we consider basis orientations in Section 0.9) but also for the design ofpiv-
oting algorithms(e.g., see [Bla77, Fuk82, FFL99]) as in the context of oriented matroid
programming (Section 0.8).

0.3.8 Proposition (Basis Exchange Property)Let M = (E,A) be a matroid, X∈ A,
and B, B′ bases of X. Then: For all e∈ B\B′ there exists f∈ B′\B such that(B\e)∪ f
is a basis of X.

Proof Let M = (E,A) be a matroid,X ∈ A, B, B′ bases ofX, ande ∈ B \ B′. Remark
that e 6∈ B \ e (see Lemma 0.3.7) andB′ 6⊆ B \ e (otherwiseX = B′ ⊆ B \ e 63 e, a
contradiction), hence there existsf ∈ B′ \ (B \ e). We will show that(B \ e) ∪ f is a
basis ofX. By Lemma 0.3.7 (iv) is(B \ e) ∪ f independent, so it remains to show that
(B \ e) ∪ f spansX. For this it is sufficient to show thate ∈ X′ := (B \ e) ∪ f because
then B ⊆ X′ and(B \ e) ∪ f ⊆ X imply X = B ⊆ X′ ⊆ X, i.e., X′ = X. Assume
e 6∈ X′. Apply the flat exchange axiom (M3) toX′, Y := B \ e, e ∈ E \ (X′ ∪ Y), and
f ∈ X′ \ Y: There existsZ ∈ A such thate ∈ Z, f 6∈ Z, andX′ ∩ Y = B \ e ⊆ Z. But
thenB ⊆ Z, which leads to the contradictionX = B ⊆ Z 63 f .

0.3.9 Theorem (Basis Cardinality) Let M = (E,A) be a matroid and X∈ A. All bases
of X have the same cardinality.

Proof Let M = (E,A) be a matroid andX ∈ A. For any basesB, B′ of X set
d(B, B′) := |B \ B′| + |B′ \ B|. Let B, B′ be bases ofX. If d(B, B′) = 0 thenB = B′,
so |B| = |B′|. If d(B, B′) > 0 thenB 6= B′, and (after possibly interchangingB andB′)
there existse ∈ B \ B′. By the basis exchange property isB̃ := (B \ e) ∪ f a basis of
X for some f ∈ B′ \ B, and by construction|B| = |B̃| andd(B̃, B′) = d(B, B′) − 2.
ReplacingB by B̃ and repeating the above arguments (at most|B| times), we find a se-
quence of bases ofX all of which have cardinality|B| where the last basis is equal toB′,
which proves|B| = |B′|.
0.3.10 Definition (Rank in Matroids) Let M = (E,A) be a matroid andX ∈ A. The
uniquely determined cardinality of a basis ofX is calledthe rank of X in M, written as
rankM(X). We call rank(M) := rankM(E) the rank of M. In addition we define for
S ⊆ E the rank of S in Mby rankM(S) := rankM(S).

Note that by definition rankM(∅) = 0.

0.3.11 Corollary Let M = (E,A) be a matroid and S⊆ T ⊆ E. The length̀ of
a maximal chainS =: X0 ⊆ X1 ⊆ · · · ⊆ X` := T with pairwise different sets
X0, X1, . . . , X` ∈ A is ` = rankM(T)− rankM(S).

Proof The claim is trivially true ifS = T , so assumeS 6= T . ConsiderXi−1, Xi ∈ A
with Xi−1 $ Xi . It is sufficient to show that rankM(Xi )− rankM(Xi−1) > 1 if and only if
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there existsZ ∈ A such thatXi−1 $ Z $ Xi . Let beB a basis ofXi−1, and choose any
e ∈ Xi \ Xi−1, then by Lemma 0.3.7 (iv) isB ∪ ean independent set. ThenB ∪ e $ Xi if
and only if rankM(Xi )− rankM(Xi−1) > 1, and thenXi−1 $ Z := B ∪ e $ Xi . On the
other hand, if there existsZ ∈ A such thatXi−1 $ Z $ Xi then by Lemma 0.3.7 (vi)B
can be extended to a basisB′ of Z, which also can be extended to a basisB′′ of Xi , hence
rankM(Xi )− rankM(Xi−1) > 1.

The largest non-trivial flats, i.e., flats which are maximal inA \ {E}, are those of rank
r − 1, wherer := rank(M). For matroids defined by matrices of full rank, these flats
correspond to subspaces ofRd which have dimensiond − 1; this motivates to call these
flatshyperplanes. The name ofcolinesis used for the flats of rankr − 2:

0.3.12 Definition (Hyperplanes, Colines)Let M = (E,A) be a matroid, furthermore
setr := rank(M). The flats of rankr − 1 are calledthe hyperplanes of M, the flats of
rankr − 2 the colines of M. The set of hyperplanes of a matroid is denoted byH .

We introduce in the following another axiomatic system for matroids based on hyper-
planes. These hyperplane axioms will be needed in the proof of Theorem 5.2.4.

0.3.13 Definition (Hyperplane Axioms) Let E be a finite set andH ⊆ 2E a set of sub-
sets ofE. We callH a set of hyperplanesif and only if the followinghyperplane axioms
(H1) and (H2) are valid:

(H1) If X,Y ∈ H such thatX ⊆ Y thenX = Y. (support)

(H2) For all X,Y ∈ H with X 6= Y ande ∈ E \ (X ∪ Y)
there existsZ ∈ H such that
e ∈ Z andX ∩ Y ⊆ Z. (hyperplane exchange)

0.3.14 PropositionA setH ⊆ 2E satisfies the hyperplane axioms(H1) and (H2) if and
only if it is the set of hyperplanes of a matroid.

Proof We first show that the hyperplane exchange axiom (H2) can be replaced by the
following stronger version:

(H2s) For all X,Y ∈ H , e ∈ E \ (X ∪ Y) and f ∈ X \ Y
there existsZ ∈ H such that
e ∈ Z, f 6∈ Z, andX ∩ Y ⊆ Z. (strong hyperplane exchange)

For this assume that there existX,Y ∈ H , e ∈ E \ (X ∪Y), and f ∈ X \Y such that there
is no Z ∈ H with e ∈ Z, f 6∈ Z, andX ∩ Y ⊆ Z; chooseX andY such that|X ∩ Y| is
maximal. By (H2) there existsX′ ∈ H such thate ∈ X′ andX ∩ Y ⊆ X′, but according
to the above assumptionf ∈ X′. If Y \ X ⊆ X′ thenY ⊆ X′ and by (H1)Y = X′, in
contradiction tof ∈ X′ \ Y, so there existsg ∈ Y \ (X ∪ X′). Furthermoree ∈ X′ \ X,
and asf ∈ X ∩ X′ implies X ∩ Y $ X ∩ X′; by the maximality of|X ∩ Y| there exists
Y′ ∈ H such thatg ∈ Y′, e 6∈ Y′, andX ∩ X′ ⊆ Y′. Now e ∈ E \ (Y ∪ Y′), f ∈ X ∩ X′
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implies f ∈ Y′ \ Y, and byg 6∈ X ∩ Y $ Y ∩ Y′ 3 g and the maximality argument there
existsZ′ ∈ H such thate ∈ Z′, f 6∈ Z′, andX ∩ Y ⊆ Y ∩ Y′ ⊆ Z′, a contradiction. This
proves that the strong hyperplane exchange (H2s) is satisfied by any set of hyperplanes.
Let H ⊆ 2E be a set satisfying (H1) and (H2), hence also (H2s). We set

A := {
X1 ∩ · · · ∩ X` | ` ≥ 1, Xi ∈ H for all i ∈ {1, . . . , `}} ∪ {E}

and show that(E,A) is a matroid, then obviously withH as its set of hyperplanes. (M1)
and (M2) are satisfied by definition. Let beX,Y ∈ A, e ∈ E \ (X ∪ Y) and f ∈ X \ Y.
Clearly X 6= E andY 6= E. By definition there existXi ,Y j ∈ H such thatX ⊆ Xi 63 e
andY ⊆ Y j 63 f . If e ∈ Y j thenZ := Y j is sufficient for (M3), otherwise byf ∈ Xi \Y j

and (H2s) there existsZ ∈ H such thate ∈ Z, f 6∈ Z, andX ∩ Y ⊆ Xi ∩ Y j ⊆ Z, which
proves (M3).
It is not difficult to see that the hyperplane axioms are satisfied by the set of hyperplanes
H of a matroidM, asH is the set of maximal sets inM different fromE.

We conclude this section by introducing an important notion which characterizes a special
class of oriented matroids which corresponds to non-degeneracy in geometry:

0.3.15 Definition (Uniform Matroid, Uniform Oriented Matroid) A matroid M is
called uniform if the set of hyperplanes ofM is the set of all(rank(M) − 1)-subsets
of E. An oriented matroid is calleduniformif its underlying matroid is uniform.

Note that in a uniform matroidM a setH ⊆ E is a hyperplane ofM if and only if
|H | = rank(M) − 1. This is much stronger than the property in general matroids which
says that every hyperplane contains at least rank(M) − 1 elements. Uniform matroids of
rank r can also be characterized as matroids with|E| ≥ r and some subsetS ⊆ E is
independent if and only if|S| ≤ r ; equivalently, a matroid of rankr is uniform if the set
B of bases is the set of allr -subsets ofE. Note that in the original paper of Bland and Las
Vergnas [BLV78] uniform matroids have been calledfree, and in Folkman and Lawrence
[FL78] uniform oriented matroids have been calledsimpleoriented matroids; we will use
the notionsimpledifferently (see Definition 1.1.3).

0.4 Minors

This section introduces minors of matroids and oriented matroids and the fundamental
operations ofdeletionandcontractionby which minors are constructed. In the case of a
matroid defined by a matrixA as introduced in Section 0.1 these operations have intuitive
geometric explanations. A deletion minor is obtained by simply deleting some of the col-
umn vectors of the matrix. In a sphere arrangement the deletion operation corresponds to
the deletion of spheres. The contraction operation is less trivial as it includes a projection
to the orthogonal space of the column vectors which are deleted. In a sphere arrangement
the contraction minor is the (lower dimensional) sphere arrangement in the intersection of
the spheres chosen to contract on. Later (in Chapters 4 and 5) we will discuss the question



0.4 MINORS 29

of how oriented matroids can be extended. Sloppily speaking this is an operation in the
opposite direction of constructing minors, and not surprisingly the study of minors is of
great importance for the extension problem. The constructions of matroids such as minors
and extensions are presented in more detail by Brylawski in Chapter 7 of [Whi86].

The formal definitions of deletion and contraction are as follows:

0.4.1 Definition (Deletion and Contraction Minors) Let M = (E,A) be a matroid and
R ⊆ E. We define thedeletion minor of M w.r.t. Rto be the pair

M \ R := (E \ R,A \ R), whereA \ R := {X \ R | X ∈ A},
and thecontraction minor of M w.r.t. Rto be the pair

M/R := (E \ R,A/R), whereA/R := {X \ R | X ∈ A andR ⊆ X}.
Let M = (E,F ) be an oriented matroid andR ⊆ E. We define thedeletion minor ofM
w.r.t. R to be the pair

M \ R := (E \ R,F \ R), whereF \ R := {X \ R | X ∈ F },
and thecontraction minor ofM w.r.t. R to be the pair

M/R := (E \ R,F /R), whereF /R := {X \ R | X ∈ F andR ⊆ X0}.

Note that by definition the operations of deletion and contraction commute, i.e., for any
matroid M = (E,A) and disjoint setsR, S ⊆ E holds: (M \ R)/S = (M/S) \ R;
analogously, the same is true for oriented matroidsM. Usually we will omit parentheses
and writeM \ R/S for (M \ R)/Setc.

It is straightforward to prove the following

0.4.2 Proposition Deletion minors and contraction minors of matroids (oriented ma-
troids) are matroids (oriented matroids, respectively). The underlying matroid of an ori-
ented matroid minor is the corresponding minor of the underlying matroid:
M \ R = M \ R andM/R = M/R.

The rest of this section considers the rank of deletion and contraction minors and of flats
(or covectors) in minors. These consideration concerning rank are very important in many
inductive proofs.

Again it is helpful to remember sphere arrangements for an illustration. LetS be a sphere
arrangement inRd andS, R ⊆ E sets of indices of some of the spheres inS. The state-
ment of the following lemma then translates as follows: If the spheres inR are deleted,
the rank spanned by the spheres inS\ R remains the same. However, if we contract to
the spheres inR, the rank spanned by the projection of the spheres inS\ R is determined
by the difference of ranks corresponding toS∪ R andR.

0.4.3 Lemma Let M = (E,A) be a matroid, R, S ⊆ E. Then:
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(i) rankM\R(S\ R) = rankM(S\ R).

(ii) rankM/R(S\ R) = rankM(S∪ R) − rankM(R).

Proof (i) Let B ⊆ S\ R be a basis of spanM(S\ R) in M (cf. Lemma 0.3.7 (vi)). We
show thatB is a basis of spanM\R(S\ R) in M \ R. B is independent inM, hence
(by Lemma 0.3.7 (ii)) for alle ∈ B there existsZ ∈ A such thatB \ e ⊆ Z 63 e and
alsoB \ e ⊆ Z \ R 63 e sinceB ⊆ E \ R. This is equivalent to: for alle ∈ B there
existsZ′ ∈ A \ R such thatB \ e ⊆ Z′ 63 e, so B is independent inM \ R. On
the other hand spanM(B) = spanM(S\ R) implies that for allZ ∈ A with B ⊆ Z
alsoS\ R ⊆ Z, hence for allZ′ ∈ A \ R with B ⊆ Z′ alsoS\ R ⊆ Z′, therefore
spanM\R(B) = spanM\R(S\ R).

(ii) Let B′ ⊆ R be a basis of spanM(R) andB ⊆ S∪ R a basis of spanM(S∪ R) in M
such thatB′ ⊆ B (cf. Lemma 0.3.7 (vi)); remark thatB \ B′ ⊆ E \ B′ = E \ R.
We show thatB \ B′ is a basis of spanM/R(S \ R) in M/R. B is independent in
M, hence (by Lemma 0.3.7 (ii)) for alle ∈ B \ B′ there existsZ ∈ A such that
B′ ⊆ B \ e ⊆ Z 63 e and also(B \ (B′ ∪ e)) ∪ R ⊆ Z 63 e since B′ ⊆ Z
implies R ⊆ Z. This is equivalent to: for alle ∈ B \ B′ there existsZ′ ∈ A/R
such that(B \ B′) \ e ⊆ Z′ 63 e, so B \ B′ is independent inM/R. On the other
hand spanM(B) = spanM(S ∪ R) implies that for allZ ∈ A with R ⊆ Z and
B ⊆ Z alsoS∪ R ⊆ Z, hence for allZ ∈ A with R ⊆ Z and B \ B′ ⊆ Z also
S∪ R ⊆ Z, by this for allZ′ ∈ A/R with B\ B′ ⊆ Z′ alsoS\ R ⊆ Z′ and therefore
spanM/R(B \ B′) = spanM/R(S\ R).

Now it is straightforward to determine the rank of the minors:

0.4.4 Corollary Let M = (E,A) be a matroid, R⊆ E. Then:

(i) rank(M \ R) = rankM(E \ R).

(ii) rank(M/R) = rank(M)− rankM(R).

In the illustrations of oriented matroids it is very natural to consider thedimensionof sub-
spaces spanned by vectors or of faces in sphere arrangements. For example, a region of
highest dimension in a sphere arrangement inRd has dimensiond − 1; in the correspond-
ing oriented matroid, this region is represented by a covector with maximal support, and
the corresponding flat has rank 0 in the underlying matroid. It is convenient to define the
rank of covectors and the dimension of oriented matroids as follows:

0.4.5 Definition (Rank and Dimension in Oriented Matroids) Let M = (E,F ) be an
oriented matroid.The rank ofM, written as rank(M), is the rank of the underlying ma-
troid. For a covectorX ∈ F we define rankM(X) := rank(M) − rankM(X0) to bethe
rank of X inM. Thedimensionequals rank−1, i.e., dim(M) := rank(M) − 1 and, for
X ∈ F , dimM(X) := rankM(X)− 1.
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By the above definition, the dimension of a covector equals the dimension of the corre-
sponding face in a sphere arrangement (cf. Sections 0.1 and 0.7).

We extend the results concerning rank of matroid minors to oriented matroids:

0.4.6 Corollary LetM = (E,F ) be an oriented matroid, R⊆ E, X ∈ F . Then:

(i) rank(M \ R) = rankM(E \ R).

(ii) rank(M/R) = rank(M)− rankM(R).

(iii) rankM\R(X \ R) = rank(M \ R)− rankM(X0 \ R).

(iv) rankM/R(X \ R) = rankM(X), provided that R⊆ X0.

Proof

(iii) rankM\R(X \ R) = rank(M \ R)− rankM\R((X \ R)0)

= rank(M \ R)− rankM\R(X0 \ R) = rank(M \ R)− rankM(X0 \ R).

(iv) rankM/R(X \ R) = rank(M/R)− rankM/R((X \ R)0)

= rank(M)− rankM(R)− rankM/R(X0 \ R)
= rank(M)− rankM(R)− (rankM(X0 ∪ R)− rankM(R))
= rank(M)− rankM(X0 ∪ R) = rank(M)− rankM(X0) = rankM(X).

Of special importance are minors w.r.t. a single element. We distinguish elements with
special properties w.r.t. deletion and contraction, namely so-calledloops and coloops.
Loops are elements which “never affect”: they are contained in every flat. In the case of
matroids defined by matrices the column vector corresponding to a loop is simply the zero
vector. Hence, deleting a loop or contracting to a loop does not change anything. Coloops
are elements which “always affect”: the rank of a collection of elements increases or
decreases whenever a coloop is added or deleted, respectively. In the case of matroids
defined by matrices the column vector corresponding to a coloop has the property that all
other vectors are contained in a proper subspace not containing the coloop vector. In a
sphere arrangement a coloop corresponds to a sphere such that all other spheres intersect
in a common point which is not on the coloop sphere. Loops and coloops are related by
duality (see Section 0.5).

0.4.7 Definition (Loop and Coloop) Let M = (E,A) be a matroid ande ∈ E. We call
e a loop of M if e ∈ X for all X ∈ A. We call e a coloop of M if E \ e ∈ A. Let
M = (E,F ) be an oriented matroid ande ∈ E. We calle a loop (coloop) ofM if e is a
loop (coloop, respectively) ofM. If M or M is determined from the context we will not
mentionM or M and simply saye is a loopor e is a coloop.

We will extend the notion of loops later to arbitrary sets of sign vectors.

The following results concerning single element deletion and contraction minors follow
from the general case discussed above:



32 AN INTRODUCTION TO ORIENTED MATROIDS

0.4.8 Corollary Let M = (E,A) be a matroid, e∈ E, and S⊆ E. Then:

(i) rank(M \ e) = rankM(E \ e) =
{

rank(M) if e is not a coloop,
rank(M)− 1 otherwise.

(ii) rank(M/e) = rank(M)− rankM(e) =
{

rank(M) if e is a loop,
rank(M)− 1 otherwise.

(iii) rankM\e(S\e) = rankM(S\e) =
{

rankM(S) if spanM(S\ e) = spanM(S),
rankM(S)− 1 otherwise.

(iv) rankM/e(S\ e) = rankM(S∪ e)− rankM(e) =
{

rankM(S) if e is a loop,
rankM(S)− 1 otherwise,

provided that e∈ S.

0.4.9 Corollary LetM = (E,F ) be an oriented matroid, e∈ E, X ∈ F . Then:

(i) rank(M \ e) = rankM(E \ e) =
{

rank(M) if e is not a coloop,
rank(M)− 1 otherwise.

(ii) rank(M/e) = rank(M)− rankM(e) =
{

rank(M) if e is a loop,
rank(M)− 1 otherwise.

(iii) rankM\e(X\e) =



rankM(X)+ 1 if e not a coloop andspanM(X
0 \ e) 6= X0,

rankM(X)− 1 if e a coloop andspanM(X
0 \ e) = X0,

rankM(X) otherwise.

(iv) rankM/e(X \ e) = rankM(X), provided that Xe = 0.

Proof (iii) rankM\e(X \ e) = rank(M \ e)− rankM(X0 \ e), where

rank(M \ e) =
{

rank(M) if e is not a coloop,
rank(M)− 1 otherwise,

and rankM(X0 \ e) =
{

rankM(X0) if spanM(X
0 \ e) = X0,

rankM(X0)− 1 otherwise,
which implies the claim.

0.5 Duality

Duality is one of the outstanding notions in the theory of oriented matroids. However,
in the present thesis duality does not play an important role; actually only few of the
later results need duality. Nevertheless, for completeness we give in the following a short
introduction to some basic notions and results of duality.

Before the definitions in terms of oriented matroids are given, consider (orthogonal) du-
ality in real vector spaces. Two vectorsx, y ∈ Rd are orthogonal if their scalar product∑

i xi yi equals to zero. An obvious property of orthogonal vectorsx, y is that if xi yi > 0
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for somei thenxj yj < 0 for somej 6= i . This property characterizes orthogonal spaces
for sign vectors:

0.5.1 Definition (Orthogonal, Dual) Let E be a non-empty finite set. Two sign vectors
X,Y ∈ {−,+, 0}E on E are calledorthogonal(denoted byX ∗ Y) if either X ∩ Y = ∅
or there aree, f ∈ X ∩ Y such thatXe = Ye andX f = −Yf . Theorthogonal space(or
dual space) of a setF of sign vectors onE is the set

F ∗ := {
X ∈ {−,+, 0}E | X ∗ Y for all Y ∈ F

}
.

As explained above, if two vectorsx, y ∈ Rd are orthogonal then also the corresponding
sign vectors sign(x), sign(y). Furthermore sign(V)∗ = sign(V⊥) for any linear subspace
V and its orthogonal spaceV⊥, where sign(V) := {sign(x) | x ∈ V} (this is not obvious,
but we do not discuss a proof here).

For a sign vectorX ⊆ {−,+, 0}E we write X ≤ 0 if Xe ∈ {−, 0} for all e ∈ E, and
similarly X ≥ 0 if −X ≤ 0. Furthermore, we writeX < 0 or X > 0 if X ≤ 0 or X ≥ 0
and all signs are different from 0, respectively. The same notation is extended to single
signs (e.g.,Xe > 0 is equivalent toXe = +).

The following duality results are mainly due to Bland and Las Vergnas [BLV78]. The
presentation follows basically Fukuda [Fuk00b].

0.5.2 Lemma Let (E,F ) be an oriented matroid, R⊆ E. Then(F \ R)∗ = F ∗/R and
(F /R)∗ = F ∗ \ R.

Proof (F \ R)∗ = F ∗/R and(F /R)∗ ⊇ F ∗ \ R are satisfied by allF ⊆ {−,+, 0}E,
which can be proved easily. For the proof of(F /R)∗ ⊆ F ∗ \ R we will need (F1) and
(F3). It is sufficient to discuss the case|R| = 1 since then by induction for|R| > 1 and
anyr ∈ R follows

(F /R)∗ = ((F /(R \ r ))/r )∗ = (F /(R \ r ))∗ \ r = (F ∗ \ (R \ r )) \ r = F ∗ \ R.

So assumeR = {r } for somer ∈ E. Let beY ∈ (F /r )∗, we will showY ∈ F ∗ \ r . Set

F = := {X ∈ F | Xr = 0},
F > := {X ∈ F | XY+ ≥ 0, XY− ≤ 0, Xr > 0},
F < := {X ∈ F | XY+ ≥ 0, XY− ≤ 0, Xr < 0},
F ± := {X ∈ F | there existi, j ∈ Y \ r such thatXi = Yi , X j = −Yj }.

Consider a sign vectorY′ ⊆ {−,+, 0}E such thatY′ \ r = Y; we will show thatY′ ∈ F ∗
for an appropriate choice ofY′

r ∈ {−,+, 0}, which provesY ∈ F ∗ \ r . It is obvious that
Y′ ∈ (F =)∗ andY′ ∈ (F ±)∗ independent from the choice ofY′

r . If X ∈ F \ (F = ∪ F ±)
then X ∈ F > ∪ F < or −X ∈ F > ∪ F <, and by (F1) it is sufficient to prove that
X ∈ F > ∪ F < implies X ∗ Y′ for an appropriate choice ofY′

r ∈ {−,+, 0} (which will
be independent ofX, of course). IfF < = ∅ then by (F1)XY 6= 0 for all X ∈ F > since
otherwise−X ∈ F <, and it is sufficient to setY′

r = −. If F > = ∅ then similarly it is
sufficient to setY′

r = +. Assume for the rest of the proof thatF > 6= ∅ andF < 6= ∅.
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ConsiderX ∈ F > and X′ ∈ F <. By (F3) there existsZ′ ∈ F such thatZ′
r = 0 and

Z′
i = (X◦X′)i for all i ∈ E\D(X, X′). ObviouslyY ⊆ E\D(X, X′) and henceZ′

Y+ ≥ 0
andZ′

Y− ≤ 0. FurthermoreZ := Z′ \ r ∈ F /r implies Z ∗ Y, and henceXY = X′
Y = 0.

This is true for allX ∈ F > andX′ ∈ F <, i.e.,F > = {X ∈ F | XY = 0, Xr > 0} and
F < = {X ∈ F | XY = 0, Xr < 0}, hence it is sufficient to setY′

r = 0.

The following result can be viewed as a generalization of the Farkas’ Lemma (e.g., see
Section 7.3 in [Sch86]) to oriented matroids. We formulate it here as a 3-painting property:

0.5.3 Proposition (3-Painting [BLV78, BLV79]) Let (E,F ) be an oriented matroid,
and let R∪ G ∪ W = E be a partition of E (i.e., R∩ G = ∅ etc.) and r ∈ R. One
might think of the partition as a coloring of the elements: R, G, and W then stand for red,
green, and white, respectively. Then exactly one of(i) and(ii) holds, where

(i) there exists X∈ F such that Xr > 0, XR ≥ 0, XG ≤ 0;

(ii) there exists Y∈ F ∗ such that Yr > 0, YR ≥ 0, YG ≤ 0, YW = 0.

Proof It is clear by the definition of orthogonality that (i) and (ii) can not be satisfied at
the same time. Assume that (i) is not satisfied, we prove (ii), first forG = ∅. We will
need for the proof only axioms (F1) and (F2).
If for all X ∈ F there existi, j ∈ R such thatXi = + and X j = − then defineY by
Ye = + if e ∈ R andYe = 0 otherwise. ThenY proves that (ii) is valid. Otherwise (F1)
implies thatR := {X ∈ F | XR ≥ 0} 6= ∅. Choose anyX′ ∈ R such thatX′

R is maximal;

by (F2) this means thatXR ⊆ X′
R for all X ∈ R. As (i) is not satisfied and by assumption

G = ∅, X′
r = 0. DefineY by Ye = + if e ∈ R \ X′

R andYe = 0 otherwise. Obviously
Yr > 0, YR ≥ 0, andYW = 0; it remains to prove thatY ∈ F ∗. Let beX ∈ F . If X ∈ R
thenX ∩ Y = ∅, henceX ∗ Y. If X 6∈ R andX ∩ Y 6= ∅, then there existi, j ∈ R \ X′

R

with Xi = + andX j = − (if no suchi, j exist then by (F2)X′ ◦ X or X′ ◦ (−X) belongs
to R, contradicting the maximality ofX′

R); this provesX ∗ Y.
Observe that for allS ⊆ E the setSF := { S X | X ∈ F } also satisfies (F1) and (F2),
furthermore( SF )∗ = S (F )

∗. The proof for generalG follows then from the proof for
(E, F̃ ) whereF̃ := G F , r̃ = r , R̃ = R ∪ G, W̃ = W, andG̃ = ∅.

A stronger formulation of the 3-painting property is the following well-known variation:

0.5.4 Proposition (4-Painting [BLV78, BLV79]) Let (E,F ) be a an oriented matroid,
and let R∪ G ∪ B ∪ W = E be a partition of E (the additional set B might be thought of
as the set of elements colored in black) and r∈ R. Then exactly one of(i) and(ii) holds,
where

(i) there exists X∈ F such that Xr > 0, XR ≥ 0, XG ≤ 0, XB = 0;

(ii) there exists Y∈ F ∗ such that Yr > 0, YR ≥ 0, YG ≤ 0, YW = 0.
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Proof It is obvious that not (i) and (ii) are satisfied at the same time. Assume that (i)
does not hold, then there is noX′ ∈ F /B such thatX′

r > 0, X′
R ≥ 0, andX′

G ≤ 0.
By Farkas’ Lemma (i.e., Proposition 0.5.3) applied to the oriented matroidM/B there
existsY′ ∈ (F /B)∗ such thatY′

r > 0, Y′
R ≥ 0, Y′

G ≤ 0, Y′
W = 0, and by Lemma 0.5.2

(F /B)∗ = F ∗ \ B, hence there existsY ∈ F ∗ such thatY′ = Y \ B, which shows that
(ii) is satisfied.

0.5.5 Lemma Let beF ⊆ {−,+, 0}, Y ∈ F ∗ and e∈ Y such thate Y ∈ F ∗. Then also
Y′ ∈ F ∗ where Y′ \ e = Y \ e and Y′

e = 0.

Proof Let beF ⊆ {−,+, 0}E, Y ∈ F ∗ ande ∈ Y such thate Y ∈ F ∗. DefineY′ by
Y′ \e = Y\eandY′

e = 0. Let beX ∈ F . By definition ofY, e Y ∈ F ∗, eitherX∩Y = ∅,
in which caseX ∩ Y′ = ∅ and henceX ∗ Y′, or there existg, h, i, j ∈ X ∩ Y such that
Xg = Yg andXh = −Yh and Xi = e Yi andX j = −( e Y) j . Because ofe ∈ D(Y, e Y)
it is not possible thatg = i = e or h = j = e, hence there arei ′ ∈ {g, i } \ e and
j ′ ∈ {h, j } \ e such thatXi ′ = Y′

i ′ andX j ′ = −Y′
j ′, which provesX ∗ Y′. This holds for

everyX ∈ F , which provesY′ ∈ F ∗.

0.5.6 Theorem (Dual Oriented Matroid [BLV78]) Let (E,F ) be an oriented matroid.
Then(E,F ∗) is also an oriented matroid.

Proof Let (E,F ) be an oriented matroid and consider the dual spaceF ∗. Obviously
0 ∈ F ∗, furthermore the symmetry in the definition of orthogonality implies that (F1)
holds forF ∗.
For (F2) considerY,Y′ ∈ F ∗, thenX ∗ Y implies X ∩ Y = ∅ or that there exist elements
e, f ∈ X ∩ Y ⊆ X ∩ (Y ◦ Y′) such thatXe = Ye and X f = −Yf ; In the latter case
follows X ∗ (Y ◦ Y′) from Ye = (Y ◦ Y′)e andYf = (Y ◦ Y′) f . In the first case, i.e.,
X ∩ Y = ∅, we similarly consider the implications ofX ∗ Y′: either X ∩ Y′ = ∅ which
implies X ∩ (Y ◦ Y′) = ∅, or there existe, f ∈ X ∩ Y′ ⊆ X ∩ (Y ◦ Y′) such that
Xe = Y′

e = (Y ◦ Y′)e and X f = −Y′
f = −(Y ◦ Y′) f , which in both cases proves that

X ∗ (Y ◦ Y′).
It remains to show that (F3) is satisfied byF ∗. Let beY,Y′ ∈ F ∗ ande ∈ D := D(Y,Y′).
We have to show that there existsZ ∈ F ∗ such thatZe = 0 andZ f = (Y ◦ Y′) f for
all f ∈ E \ D; when we defineS := D \ e and Ỹ := Y ◦ Y′, this is equivalent to
Ỹ \ D ∈ F ∗/e \ S = (F \ e/S)∗ (the last equality follows by Lemma 0.5.2). Let be
X ∈ F such thatX \ D ∈ F \e/S, i.e., XS = 0. We have to show that(X \ D)∗ (Ỹ \ D).
ObviouslyX ∗ Y andX ∗ Y′ imply X ∗ Ỹ, and because ofXS = 0 also(X \ S) ∗ (Ỹ \ S),
and similarly(X \ S) ∗ ((Y′ ◦ Y) \ S). SinceỸ \ D = (Y′ ◦ Y) \ D, Lemma 0.5.5 implies
that(X \ D) ∗ (Ỹ \ D).

0.5.7 Definition (Dual Oriented Matroid) Let M = (E,F ) be an oriented matroid.
Then we call the oriented matroidM∗ := (E,F ∗) the dual ofM.

0.5.8 Proposition (Dual of Dual [BLV78]) M∗∗ = M for every oriented matroidM.

Proof Let M = (E,F ) be an oriented matroid. The proof forF ⊆ F ∗∗ is trivial. We
showF ∗∗ ⊆ F by induction onn = |E|. If n = 0 thenF = F ∗ = {0}, where0 is the
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zero vector with empty ground set. Ifn = 1 thenF = {( 0 )} andF ∗ = {(− ), (+ ), ( 0 )}
or vice versa. ThereforeF = F ∗∗ for n ≤ 1. Assumen ≥ 2. Let beX ∈ F ∗∗; show
X ∈ F . If X0 6= ∅ choosee ∈ X0, then by Lemma 0.5.2 and induction

X \ e ∈ F ∗∗/e = (F ∗ \ e)∗ = (F /e)∗∗ = F /e.

ThenX ∈ F . OtherwiseX0 = ∅. For everye ∈ E holds, similarly as above,

X \ e ∈ F ∗∗ \ e = (F ∗/e)∗ = (F \ e)∗∗ = F \ e.

Let beX′ ∈ F such thatX′ \ e = X \ e. If X′
e = Xe thenX′ = X ∈ F . If X′

e = 0 then
let for f ∈ E \ e be X′′ ∈ F such thatX′′ \ f = X \ f . ThenX′ ◦ X′′ = X ∈ F . Finally,
if X′

e = −Xe, the sign vectorsX, X′ ∈ F ∗∗ only differ in e ∈ D(X, X′), which implies
by Lemma 0.5.5 thatX′′ defined byX′′ \ e = X \ e and X′′

e = 0 also is inF ∗∗. Then
X′′ ∈ F (see above), henceX′′ ◦ (−X′) = X ∈ F .

In Definition 0.4.7 we have defined loops and coloops. The name of a coloop is motivated
by the following fact, where the prefix “co-” stands for “dual”:

0.5.9 Lemma Let M = (E,F ) be an oriented matroid and e∈ E. Then e is a loop of
M if and only if e is a coloop of the dualM∗.

Proof e is a loop ofM if and only if Xe = 0 for all X ∈ F . By definition of the dual
space, there isY ∈ F ∗ whereY \ e = 0 andYe 6= 0. Hencee is a coloop ofM∗. The
reverse direction is also very simple.

The previous results lead to the following:

0.5.10 Corollary Let M = (E,F ) be an oriented matroid. Then the rank of the dual is
determined byrank(M∗) = |E| − rank(M).

Proof The proof is by induction onn := |E|. If n = 0 then rank(M) = 0 = rank(M∗). If
n > 0 lete ∈ E. We assume by induction that rank((M \e)∗) = |E \e|− rank(M \e); by
Lemma 0.5.2 this is equivalent to rank(M \ e)+ rank(M∗/e) = |E| − 1. We consider the
two cases thate is a coloop ofM or not; in either case, the combination of Lemma 0.5.9
and Corollary 0.4.9 (i) and (ii) leads to rank(M)+rank(M∗)−1 = |E|−1, which implies
the claim.

Our approach for proving the result of Corollary 0.5.10 is rather unusual, normally it is a
corollary of the following fact:

0.5.11 PropositionLet M = (E,F ) be an oriented matroid. A set B⊆ E is a basis of
M if and only if E\ B is a basis ofM∗.

Proof Setn := |E| andr := rank(M) = rank(M). Let B ⊆ E be a basis ofM, hence
|B| = r . By Corollary 0.5.10 rank(M∗) = rank(M∗) = n − r , hence it is sufficient to
show rankM∗(E \ B) = n − r . By Corollary 0.4.6 (i) rankM∗(E \ B) = rank(M∗ \ B),
and by Lemma 0.5.2 rank(M∗ \ B) = rank((M/B)∗). Then Corollary 0.5.10 implies
rank((M/B)∗) = |E \ B| − rank(M/B) = n − r since rank(M/B) = 0 asB is a basis
of M (see also Corollary 0.4.6 (ii)). LetB ⊆ E be such thatE \ B is a basis ofM∗. By
the above result isB = E \ (E \ B) a basis ofM∗∗ = M (cf. Proposition 0.5.8).
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0.6 Cocircuits

We have a first look at cocircuits, the minimal covectors w.r.t.� in F \ 0. In an ori-
ented matroid defined by a sphere arrangement as introduced in Section 0.1, cocircuits
correspond to cells of dimension 0. We show several properties of cocircuits, especially
that the set of cocircuits determines the set of covectors, and that sets of cocircuits can
be characterized by axioms, i.e., there are cocircuit axioms which are equivalent to the
covector axioms of oriented matroids.

0.6.1 Definition (Cocircuits) For an oriented matroidM = (E,F ) we call

D := min(F \ 0) = {V ∈ F | for all X ∈ F \ 0 such thatX � V is X = V}
the set ofcocircuitsof M.

Many of the following results come from (at least similar) results in [BLV78]:

0.6.2 Lemma LetM = (E,F ) be an oriented matroid, X∈ F , and e∈ X. There exists
a cocircuit V ∈ D of M such that V� X and Ve = Xe.

Proof Let M = (E,F ) be an oriented matroid,X ∈ F , ande ∈ X. Consider the set
F̃ := {Y ∈ F | Y � X andYe = Xe} which is not empty sinceX ∈ F̃ . We have to
show thatF̃ contains a cocircuit. LetV ∈ F̃ be minimal w.r.t. the conformal relation
�, i.e., there is noY ∈ F̃ with Y ≺ V . We show thatV 6∈ D leads to a contradiction.
Assume that there existsW ∈ F \ 0 with W ≺ V � X. Because of the minimality of
V in F̃ we concludeWe = 0. Remark thatD(V,−W) = W 6= ∅, therefore conformal
elimination (F3c) w.r.t. V , −W, and D := D(V,−W) implies that there existf ∈ D
and Z ∈ F such thatZ f = 0, ZD � VD, and Z \ D = (V ◦ (−W)) \ D. From this
follows Z � V (otherwise there existsg ∈ E \ D such that 06= Zg 6= Vg, henceVg = 0
andZg = −Wg 6= 0, in contradiction toWg � Vg), Z 6= V (sinceZ f = 0 6= Vf ) and
Ze = Xe (because ofWe = 0 is Ze = (V ◦ (−W))e = Ve = Xe 6= 0). But Z contradicts
the minimality ofV in F̃ , which completes the proof.

0.6.3 Proposition (Conformal Decomposition [BLV78]) Let M = (E,F ) be an ori-
ented matroid. Every covector X∈ F \ 0 has a representation of the form

X = V1 ◦ V2 ◦ · · · ◦ V`,

where each Vi is a cocircuit ofM conforming to X, i.e., Vi ∈ D and Vi � X for all
i ∈ {1, . . . , `}; there is always such a conformal decomposition of X with` ≤ |X|.
Proof Let M = (E,F ) be an oriented matroid andX ∈ F \ 0. By Lemma 0.6.2 there
exists for everye ∈ X a cocircuitVe ∈ D such thatVe � X andVe

e = Xe. Obviously it
is sufficient to set{V1, V2, . . . ,V`} := {Ve | e ∈ X}.
0.6.4 Corollary (Cocircuits Determine Covectors)The setD of cocircuits of an ori-
ented matroidM = (E,F ) determines the set of covectors by

F = {X | X = V1 ◦ V2 ◦ · · · ◦ V` for Vi ∈ D such that Vi � X, ` ≥ 1} ∪ {0}.
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Proof The covector composition axiom (F2) makes sure that every composition of cocir-
cuits is inF , on the other hand conformal decomposition (Proposition 0.6.3) proves that
every covector (except0) can be generated by composition of cocircuitsVi with Vi � X.

0.6.5 Definition (Cocircuit Axioms) Let E be a finite set andD ⊆ {−,+, 0}E a set of
sign vectors onE. We say thatD is a set of cocircuitsif and only if the followingcocircuit
axioms(C0) to (C3) are valid:

(C0) 0 6∈ D .

(C1) If X ∈ D then−X ∈ D . (symmetry)

(C2) If X,Y ∈ D such thatX ⊆ Y thenX = Y or X = −Y. (minimality of support)

(C3) For allX,Y ∈ D with X 6= −Y ande ∈ D(X,Y)
there existsZ ∈ D such that
Ze = 0 and
Z f ∈ {X f ,Yf , 0} for all f ∈ E. (cocircuit elimination)

0.6.6 Proposition (Strong Cocircuit Elimination [BLV78, FL78]) Let D be a set of
sign vectors on E satisfying(C0), (C1), and(C2). Then(C3) is equivalent to

(C3s) For all X,Y ∈ D ande ∈ D(X,Y) and f ∈ X \ D(X,Y)
there existsZ ∈ D such that
Ze = 0 and
Z f = X f and
Zg ∈ {Xg,Yg, 0} for all g ∈ E. (strong cocircuit elimination)

Proof We refer to the proof of Theorem 3.2.5 in [BLVS+99].

The above set of cocircuit axioms of oriented matroids are usually taken as the defining
set of axioms of oriented matroids (as it was the case in the original work of Bland and
Las Vergnas [BLV78]). We have chosen the covector axioms for the definition of oriented
matroids. The study of covector axioms is mainly due to Edmonds, Fukuda, and Mandel
(see [Fuk82, Man82]).

0.6.7 Proposition A setD of sign vectors satisfies the cocircuit axioms(C0) to (C3) if
and only if it is the set of cocircuits of an oriented matroid.

Proof Let D be a set of cocircuits of an oriented matroid(E,F ), and we show that
(C0) to (C3) are satisfied. (C0) follows by definition and (C1) from the symmetry ifF .
For (C2) considerX,Y ∈ D ⊆ F with X ⊆ Y. If D(X,Y) = ∅ then X � Y, and
by definition X = Y. If D(X,Y) 6= ∅ then by conformal elimination (F3c) there exist
e ∈ D := D(Y, X) and Z ∈ F such thatZe = 0 andZD � YD and Z f = (Y ◦ X) f

for all f ∈ E \ D. By X ⊆ Y and Ze = 0 6= Ye follows Z ≺ Y, henceZ = 0. Then
X \ D = Y \ D = 0, soX = −Y. (C3) finally follows from (F3).
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Let D be a set of cocircuits, i.e.,D satisfies (C0) to (C3). DefineF according to Corol-
lary 0.6.4. We show thatF satisfies the covector axioms (F0) to (F3), i.e.,(E,F ) is
an oriented matroid whose set of cocircuits obviously isD . (F0) and (F1) follow by
definition and the symmetry inD . In order to show (F2) we prove thatF is equal to

F̃ := {X | X = V1 ◦ V2 ◦ · · · ◦ V` for Vi ∈ D, ` ≥ 1} ∪ {0}.
ObviouslyF ⊆ F̃ . Let beX ∈ F̃ , we show thatX 6∈ F leads to a contradiction, hence
F̃ ⊆ F . AssumeX 6∈ F , henceX 6= 0, i.e., X is of the formX = V1 ◦ · · · ◦ V` for
Vi ∈ D and somè ≥ 1. Obviously there existsX′ ∈ F \0 such thatX′ � X, and we can
choose such aX′ with maximal|X′|; thenX′ ≺ X. For the smallesti ∈ {1, . . . , `} with
Vi 6⊆ X′ is X′ ≺ X ◦ Vi = X, hence we can choose someV ∈ D with X′ ≺ X′ ◦ V � X
such that|D(V, X)| is minimal. If D(V, X) = ∅ thenV � X and henceX′ ≺ X′◦V ∈ F ,
contradicting the maximality of|X′|. So there existe ∈ D(V, X) ⊆ X′ and f ∈ V \ X′.
By definition of F there existWi ∈ D with Wi � X′ and X′ = W1 ◦ · · · ◦ Wk for
somek ≥ 1, and thene ∈ D(V,W j ) for someW j . By the strong cocircuit elimination
(C3s) (see Proposition 0.6.6) applied toV , W j , e, and f ∈ V \ D(V,W j ) there exists
V ′ ∈ D such thatV ′

e = 0 andV ′
f = Vf and V ′

g ∈ {Vg,W
j

g , 0} for all g ∈ E, so
D(V ′, X) ⊆ D(V, X) \ e, but sinceX′ ≺ X′ ◦ V ′ � X this contradicts the minimality
of |D(V, X)|. For (F3) it is sufficient to prove (F3w) (see Proposition 0.2.2). Let be
X,Y ∈ F , e ∈ D(X,Y), and f ∈ X \ D(X,Y). By definition there existsV ∈ D such
thatVf = X f andV � X. If Ve = 0 then this proves (F3w), otherwiseVe = Xe. Again
by definition, there existsW ∈ D such thatWe = Ye andW � Y. Apply (C3s) to V , W,
e, and f ∈ V \ D(V,W): There existsZ ∈ D ⊆ F such thatZe = 0, Z f = Vf = X f ,
and for allg ∈ E is Zg ∈ {Vg,Wg, 0} ⊆ {Xg,Yg, 0}.

We introduce in the following a stronger elimination axiom which will be used in Chap-
ter 5 for the discussion of single element extensions.

0.6.8 Definition (Modular) Let D be a set of sign vectors such that{X0 | X ∈ D} is the
set of hyperplanes of a matroidM. Then we callX,Y ∈ D modular in M if X0 ∩ Y0 is a
coline (i.e., rankM(X0 ∩ Y0) = rank(M)− 2).

The above definition e.g., applies to sets of cocircuits.

0.6.9 Proposition (Modular Cocircuit Elimination [LV78b, LV84]) A set D of sign
vectors is a set of cocircuits if and only if{X0 | X ∈ D} is the set of hyperplanes of
a matroid M andD satisfies the cocircuit axioms(C0), (C1), (C2), and

(C3m) For all X,Y ∈ D which are modular in M and e∈ D(X,Y)
there exists Z∈ D such that
Ze = 0 and
Z f ∈ {X f ,Yf , 0} for all f ∈ E. (modular cocircuit elimination)

Proof It is clear that (C3) implies (C3m). Let D be a set of sign vectors onE which
satisfies (C0), (C1), (C2), and (C3m), and in addition assume that{X0 | X ∈ D} is the
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set of hyperplanes of a matroidM. If rank(M) = 1 then (C3) is trivially fulfilled, and
if rank(M) = 2 then every two cocircuits with distinct support are modular inM, hence
assume rank(M) ≥ 3, so also|E| ≥ 3. The proof that (C3) holds is by induction on the
cardinality|E| of the ground set. Forg ∈ E set

D (\g) :=
{ {X \ g | X ∈ D such that spanM(X

0 \ g) 6= X0} if g is a coloop ofM,
{X \ g | X ∈ D such that spanM(X

0 \ g) = X0} otherwise.

andD/g := {XE\g | X ∈ D such thatXg = 0}. Observe that the zero supports of
D (\g) andD/g are the sets of hyperplanes ofM \ g andM/g, respectively (see Corol-
lary 0.4.9 (iii) and (iv)); so ifD is a set of cocircuits thenD (\g) andD/g are the sets of
cocircuits of the deletion and contraction minors w.r.t.g.

We show now thatD (\g) andD/g satisfy (C0), (C1), (C2), and (C3m), hence by induction
also (C3). SinceD (\g) = D/g if g is a coloop ofM (note that then there is a cocircuit
X ∈ D with X = {g} what implies by (C2)Yg = 0 for all Y ∈ D \ {X,−X}), the
only nontrivial case is the proof thatD (\g) satisfies (C3m) wheng is not a coloop. Let be
X′,Y′ ∈ D (\g) modular inM \ g ande ∈ D(X′,Y′). Let X,Y be the unique sign vectors
in D such thatX \ g = X′ andY \ g = Y′; uniqueness is implied by (C2).X andY are
modular inM if and only if spanM((X

0∩Y0)\g) = X0∩Y0 (Corollary 0.4.9 (iii)), which
is clear unlessg ∈ X0∩Y0, but thenX0∩Y0 must be a coline since otherwise there exists
H ∈ M such thatX0 ∩ Y0 $ H $ X0, henceg ∈ H and(X0 ∩ Y0) \ g $ H \ g $ X0 \ g
contradicts thatX′,Y′ are modular inM \ g. Therefore areX andY modular inM and
e ∈ D(X,Y), and by (C3m) there existsZ ∈ D such thatZe = 0 andZ f ∈ {X f ,Yf , 0}
for all f ∈ E, especiallyX0 ∩ Y0 ⊆ Z0. Remark that spanM(Z

0 \ g) = Z0 (otherwise
g ∈ Z0 andZ0 \ g ∈ M is a coline which is identical toX0 ∩ Y0 because ofX0 ∩ Y0 =
spanM((X

0 ∩ Y0) \ g) ⊆ spanM(Z
0 \ g) = Z0 \ g, in contradiction toZ0 3 e 6∈ X0 ∩ Y0).

So Z \ g ∈ D (\g), which is sufficient to show (C3m) for D (\g).

Let be X,Y ∈ D with X 6= −Y ande ∈ D(X,Y). Remark that rank(M) ≥ 3 implies
|X0| ≥ rankM(X0) = rank(M) − 1 ≥ 2 and similarly|Y0| ≥ 2. If X ∪ Y 6= E then for
g ∈ X0 ∩ Y0 find Z′ ∈ D/g such thatZ′

e = 0 andZ′
f ∈ {X f ,Yf , 0} for all f ∈ E \ g.

ThenZ ∈ D with Z \ g = Z′ is sufficient to prove (C3). Otherwise we can assume
 X ∪ Y = E.

Let beg ∈ X. If g is a coloop ofM thenX0 = E \ g (sinceX0 ⊆ E \ g is a hyperplane),
and thenX ∪ Y = E impliesY0 = {g}, a contradiction to|Y0| ≥ 2. So,g is not a coloop
of M, andg ∈ X implies X \ g ∈ D (\g). This and symmetry inX andY proves that
 X \ g ∈ D (\g) for all g ∈ X, and Y\ g ∈ D (\g) for all g ∈ Y.

Let beg ∈ (X ∩ Y) \ e, henceX′ := X \ g andY′ := Y \ g in D (\g), which is a set
of cocircuits. AsX′ 6= −Y′ ande ∈ D(X′,Y′), one can apply cocircuit elimination to
X′, Y′, ande: There existsZ′ ∈ D (\g) such thatZ′

e = 0 andZ′
f ∈ {X′

f ,Y
′
f , 0} for all

f ∈ E \ g. Let beZ ∈ D such thatZ \ g = Z′. ThenZe = 0 andZ f ∈ {X f ,Yf , 0}
for all f ∈ E \ g. If for someg ∈ (X ∩ Y) \ e one findsZg ∈ {Xg,Yg, 0} then (C3) is
satisfied. OtherwiseZg 6∈ {Xg,Yg, 0} for all g ∈ (X ∩ Y) \ e hence
 D(X,Y) = {e}.
Let beg ∈ X0 ⊆ Y. Since|X0| ≥ 2 there existsf ∈ X0 \ g. X \ f 6= 0 is a covector in
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the oriented matroid defined byD (\g), so by Lemma 0.6.2 there existsX′ ∈ D (\g) such
that X′ � X \ f and X′

e = Xe. As showed above,Y′ := Y \ g ∈ D (\g). By cocircuit
elimination inD (\g) applied toX′, Y′, ande there existsZ′ ∈ D (\g) such thatZ′

e = 0 and
Z′

f ∈ {X′
f ,Y

′
f , 0} for all f ∈ E \ g. Let beZ ∈ D such thatZ \ g = Z′. ThenZe = 0

andZ f ∈ {X f ,Yf , 0} for all f ∈ E \ g, and because ofD(X,Y) = {e} is Z f � X ◦ Y
for all f ∈ E \ g. EitherZ is sufficient to prove (C3), orZg 6∈ {Xg,Yg, 0} = {Yg, 0} and
henceg ∈ D(X ◦ Y, Z). If this case occurs for allg ∈ X0 then
 for all g ∈ X0 there exists Z∈ D such that Ze = 0 and D(X ◦ Y, Z) = {g}.
Let beg ∈ X0 and Z ∈ D such thatZe = 0 andD(X ◦ Y, Z) = {g}. If Y0 ∩ Z0 = ∅
let be h ∈ Y0 ⊆ Z. Again, as before, there existŝZ ∈ D such thatẐe = 0 and
D(X ◦ Y, Ẑ) = {h}. As Ẑ = −Z would imply Z = {g, h} andY0 ∩ Z0 = Y0 \ g 6= ∅,
we can assumêZ 6= −Z. By cocircuit elimination inD/e applied toZ \ e, Ẑ \ e, and
h and lifting the resulting vector, there existsZ′ ∈ D such thatZ′

e = 0, Z′
h = 0, and

Z′
f ∈ {Z f , Ẑ f , 0} for all f ∈ E, which impliesZ′

f ∈ {X f ,Yf , 0} for all f ∈ E \ g.
Either Z′ proves (C3), orZ′

g 6∈ {Xg,Yg, 0} = {Yg, 0} andD(X ◦ Y, Z′) = {g}, and then
setZ := Z′ ∈ D , henceZe = 0, D(X ◦ Y, Z) = {g}, andY0 ∩ Z0 = {h} 6= ∅.

Let beh ∈ Y0 ∩ Z0. Apply cocircuit elimination inD/h to Y \ h, Z \ h, andg and
lift the resulting vector toD : There existsY′ ∈ D such thatY′

h = 0, Y′
g = 0, and

Y′
f ∈ {Yf , Z f , 0} for all f ∈ E, henceY′

f ∈ {X f ,Yf , 0} for all f ∈ E \ e. EitherY′
e = 0

which completes the proof, orY′
e 6= 0, i.e.,Y′

e = Ye. Then apply cocircuit elimination in
D/g to X \ g, Y′ \ g, ande and lift the resulting vector toD : There existsZ′ ∈ D such
that Z′

g = 0, Z′
e = 0, andZ′

f ∈ {X f ,Y′
f , 0} for all f ∈ E, which finally proves (C3).

0.7 Topes and the Big Face Lattice

This section introduces topes, the maximal covectors inF . W.r.t. a sphere arrangement as
introduced in Section 0.1, topes correspond to regions of maximal dimension. We discuss
the facial relationship of the covectors, resulting in the definition of the (big) face lattice,
and prove important properties of this face lattice. The naming oftopesfollows Edmonds,
Fukuda, and Mandel (see [Fuk82, Man82]).

0.7.1 Definition (Topes)For an oriented matroidM = (E,F ) we call

T := max(F ) = {T ∈ F | for all X ∈ F such thatT � X is T = X}
the set oftopesof M.

An obvious characterization of topes (within a set of covectors) is the following:

0.7.2 Lemma A covector X∈ F is a tope if and only if X0 is the set of loops ofM.

Proof Let M = (E,F ) be an oriented matroid andX ∈ F . Let E0 denote the set of
loops ofM. ObviouslyE0 ⊆ X0. If E0 $ X0 let beg ∈ X0 \ E0 andY ∈ F such that
Yg 6= 0. ThenX ≺ X ◦ Y, henceX is not a tope. On the other hand, ifX ∈ F is not a
tope then its zero support is obviously not equal toE0.
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The following is an unpublished result of Mandel (see Theorem 1.1. in [Cor85a, Cor85b]),
where our proof is similar to one in [Fuk00b]:

0.7.3 Proposition (Topes Determine Covectors)The setT of topes of an oriented ma-
troid M = (E,F ) determines the set of covectors by

F = {X ∈ {−,+, 0}E | X ◦ T ∈ T for all T ∈ T }.
Proof Let (E,F ) be an oriented matroid andT its tope set. IfX ∈ F then (F2) implies
X ◦ T ∈ F for every topeT ∈ T , and by Lemma 0.7.2 we conclude thatX ◦ T ∈ T .

For the other direction considerX ∈ {−,+, 0}E with the property thatX ◦ T ∈ T for all
T ∈ T ; we have to show thatX ∈ F . We will prove thatX ◦ Y ∈ F for all Y ∈ F ; the
proof is by induction on|(X ◦Y)0|, and the claim finally will follow for|(X ◦Y)0| = |X0|
since thenX ◦ Y = X ∈ F .
Consider firstY ∈ F with |(X ◦ Y)0| minimal: Let Z ∈ T be any tope withY � Z, then
the minimality of|(X ◦ Y)0| implies X ◦ Y = X ◦ Z ∈ F .
For the inductive step considerY ∈ F with |(X ◦ Y)0| not minimal and assume that
X ◦ Z ∈ F for all Z ∈ F with |(X ◦Y)0| > |(X ◦ Z)0|. It is clear that there existsZ ∈ F
with |(X ◦ Y)0| > |(X ◦ Z)0| and X ◦ Y � X ◦ Z, i.e., X ◦ Y ≺ X ◦ Z ∈ F ; we can
assume that there is noZ′ ∈ F such thatX ◦ Y ≺ X ◦ Z′ ≺ X ◦ Z. Composition of
Y ∈ F andZ ∈ F givesY ◦ Z ∈ F with |(X ◦ Y)0| > |(X ◦ Z)0| ≥ |(X ◦ Y ◦ Z)0|,
henceW+ := X ◦ Y ◦ Z ∈ F and similarlyW− := X ◦ Y ◦ (−Z) ∈ F . From
X ◦ Y ≺ X ◦ Y ◦ Z follows D := D(W+,W−) 6= ∅, and by conformal elimination
applied toW+, W−, and D there existse ∈ D and W ∈ F such thatWe = 0 and
WD � W+

D andWf = (W+ ◦ W−) f = W+
f for all f ∈ E \ D, henceW � W+. Remark

(for the first and last equality of what follows) thatX ⊆ E \ D andX ◦ Y � X ◦ Z:

X ◦ W = W � W+ = X ◦ Y ◦ Z = X ◦ Z.

Furthermoree ∈ (X0 ∪ W0) \ Z0 implies X ◦ W ≺ X ◦ Z. On the other hand it is
easy to see thatX ◦ Y � X ◦ W, and finally the above assumption onZ implies that
X ◦ Y = X ◦ W = W ∈ F .

The following investigations of covectors and their facial relationship have been presented
explicitly in [Fuk82, Man82] and partially or implicitly in [FL78, LV80].

We extend the notion of a loop to arbitrary sets of signs vectors and define the notion of
parallel elements:

0.7.4 Definition (Loop, Parallel) Let F be a set of sign vectors on a finite ground setE.
An elemente ∈ E is calleda loop ofF if Xe = 0 for all X ∈ F . Two elementse, f ∈ E
are calledparallel elements ofF if either Xe = X f for all X ∈ F or Xe = −X f for all
X ∈ F . Parallelness is an equivalence relation and defines theparallel classes ofF .

Note that for oriented matroids the new definition of a loop falls together with the former
one in the following sense: ifM = (E,F ) is an oriented matroid with set of cocircuits
D and set of topesT , then all the following statements fore ∈ E are equivalent:e is a
loop of M, e is a loop ofF , e is a loop ofD , e is a loop ofT . Parallel classes can be
characterized in oriented matroids as follows:
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0.7.5 Lemma Let (E,F ) be an oriented matroid. Two elements e, f ∈ E are parallel
elements ofF if and only if there exists no X∈ F such that exactly one of Xe and Xf is
equal to0.

Proof If for some X ∈ F exactly one ofXe and X f is equal to 0 thene and f are not
parallel by definition. On the other hand, considere and f that are not parallel, hence
either there existsX ∈ F such that exactly one ofXe andX f is equal to 0 (which would
prove the claim) or there existX,Y ∈ F such thatXe = X f 6= 0 andYe = −Yf 6= 0.
After possibly interchanginge and f we can assumeXe = −Ye 6= 0 andX f = Yf 6= 0.
By weak elimination (F3w) there existsZ ∈ F such thatZe = 0 andZ f = X f 6= 0,
which proves the claim.

The next lemma is the base of the investigation of the facial relationship in connection
with the rank of covectors:

0.7.6 Lemma Let (E,F ) be an oriented matroid and X,Y ∈ F such that X≺ Y. Then
the following three statements are equivalent:

(i) X0 \ Y0 a parallel class ofF /Y0.

(ii) rankM(Y)− rankM(X) = 1.

(iii) There is no Z∈ F with X ≺ Z ≺ Y.

Proof We proof the equivalence of the negated statements.
If S := X0 \ Y0 is not a parallel class ofF /Y0 then by Lemma 0.7.5 there existe, f ∈ S
and Z ∈ F such thatY0 ⊆ Z0 and exactly one ofZe and Z f is equal to 0. But then
X0 % X0 ∩ Z0 % Y0, hence 1< rankM(X0)− rankM(Y0) = rankM(Y)− rankM(X).
If rankM(Y) − rankM(X) > 1 then by Lemma 0.3.7 (vi) every basisB of Y0 in M can
be augmented bye ∈ X0 \ Y0 such thatB ∪ e is an independent subset ofX0, and then
X0 % B ∪ e % Y0. There existsZ̃ ∈ F such thatZ̃0 = B ∪ e. SetZ′ := X ◦ Z̃ ∈ F ,
then X � Z′ and(Z′)0 = B ∪ e. If D := D(Y, Z′) = ∅ then Z′ ≺ Y, which proves
the negation of (iii). OtherwiseD 6= ∅, and we can apply conformal elimination (F3c)
to Y, Z′, and D: there existe ∈ D and Z ∈ F such thatZe = 0, ZD � YD and
Z \ D = (Y ◦ Z′) \ D. Then(Z′)0 ⊇ Y0 impliesZ \ D = Y \ D and byD ⊆ Y \ X also
X ≺ X ◦ Z ≺ Y, which proves that (iii) is not valid.
If there existsZ ∈ F with X ≺ Z ≺ Y then there existe, f ∈ S := X0 \ Y0 with
e ∈ Z0 63 f , and by Lemma 0.7.5 isSnot a parallel class ofF /Y0.

Before we investigate the face lattice of an oriented matroid we state the following so-
calledreorientation propertyor shelling propertyof tope sets:

0.7.7 Corollary Let (E,F ) be an oriented matroid andT its set of topes. Then for all
X,Y ∈ T with X 6= Y there exists a parallel class S⊆ D(X,Y) such thatS X ∈ T .
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Proof Let be X,Y ∈ T such thatX 6= Y. Let E0 denote the set of loops ofM. By
Lemma 0.7.2X = Y = E \ E0, so D(X,Y) 6= ∅. We apply conformal elimination to
X, Y, and D := D(X,Y): there existsZ ∈ F such thatZe = 0 for somee ∈ D and
ZD � XD, andZ \ D = (X ◦ Y) \ D = X \ D = Y \ D. We assume thatZ is maximal
w.r.t. � with that property. ThenZ ≺ X andS := Z0 \ X0 = X \ Z ⊆ D. Furthermore
there is noZ′ ∈ F with Z ≺ Z′ ≺ X. By Lemma 0.7.6 isS a parallel class ofF /E0,
hence ofF , and obviouslyZ ◦ (−X) = Z ◦ Y = S X ∈ T .

We consider in the following the poset formed by covectors and the conformal relation
�. We have seen in Section 0.1 that a sphere arrangement and the corresponding oriented
matroid have the same face posets. If an artificial greatest element1 is added to the set of
covectors then the relation� defines a lattice (for an illustration see Figure 0.3):

0.7.8 Lemma Let M = (E,F ) be an oriented matroid. The partially ordered set
F̂ (M) := (F̂ ,�) is a lattice, whereF̂ := F ∪ {1} and � is the conformal relation
extended by X� 1 for all X ∈ F̂ .

Proof Let M = (E,F ) be an oriented matroid and(F̂ ,�) be the partially ordered set
as defined above. Consider any facesX,Y ∈ F̂ . We have to show the existence of
sup(X,Y) ∈ F̂ and inf(X,Y) ∈ F̂ :

(i) There exists a smallest element sup(X,Y) ∈ F̂ such thatX � sup(X,Y) and
Y � sup(X,Y): If X � Y or Y � X then sup(X,Y) = Y or sup(X,Y) = X,
respectively. OtherwiseX andY are not comparable, thereforeX,Y ∈ F \ {0}. If
D(X,Y) = ∅ then sup(X,Y) = X ◦ Y = Y ◦ X ∈ F , otherwise sup(X,Y) = 1.

(ii) There exists a greatest element inf(X,Y) ∈ F̂ such that inf(X,Y) � X and
inf(X,Y) � Y: If X � Y or Y � X then inf(X,Y) = X or inf(X,Y) = Y, respec-
tively. OtherwiseX andY are not comparable, thereforeX,Y ∈ F \ {0}. Consider
the (finite) set of lower bounds{Z1, . . . , Z`} = {Z ∈ F | Z � X andZ � Y},
which is non-empty as it contains0. Then inf(X,Y) = Z1 ◦ · · · ◦ Z` ∈ F (note that
the order of theZi does not affect the result of the composition).

0.7.9 Definition (The Big Face Lattice)For an oriented matroidM = (E,F ) we call
the latticeF̂ (M) = (F̂ ,�) defined in Lemma 0.7.8the face lattice ofM (also calledthe
big face lattice ofM), andF̂ is calledthe set of faces ofM.

We define rankM(1) := rank(M)+ 1.

The following result says that the big face lattice of an oriented matroidM is a graded
lattice (of length rank(M)+ 1); this is also called the Jordan-Dedekind chain property.

0.7.10 Theorem (Rank Equals Height in Face Lattice [FL78, LV80])In the face lat-
tice F̂ (M) of an oriented matroidM = (E,F ), the height of any X∈ F̂ is uniquely
determined as it equals the rank of X inM.
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Proof ConsiderX,Y ∈ F̂ with the property thatX ≺ Y and there is noZ ∈ F̂ such
that X ≺ Z ≺ Y. We show rankM(Y) − rankM(X) = 1; this is sufficient to prove the
claim, as by definition rankM(0) = rank(M) − rankM(E) = rank(M) − rank(M) = 0.
For Y 6= 1 the claim follows from Lemma 0.7.6. IfY = 1 then X is a tope, hence
is X0 the set of loops ofM (see also Lemma 0.7.2) and therefore rankM(X0) = 0 and
rankM(Y)− rankM(X) = (rank(M)+ 1)− (rank(M)− 0) = 1.

0.7.11 Corollary (Rank and Dimension of Cocircuits and Topes)A covector X∈ F
is a cocircuit if and only ifrankM(X) = 1, or, equivalently,dimM(X) = 0. The set of
zero supports of cocircuits is the set of hyperplanes of the underlying matroid. X is a tope
if and only ifrankM(X) = rank(M), or, equivalently,dimM(X) = dim(M).

0.7.12 Definition (F i , i -Face, f i ) Given an oriented matroidM = (E,F ), we call for
i ∈ {−1, . . . , dim(M)} a sign vector in

Fi := {X ∈ F | dimM(X) = i }
an i -face, and we setfi := |Fi | for the number ofi -faces.

Obviously alwaysf−1 = 1; furthermoref0 = |D | and fd = |T |, whered = dim(M).

0.7.13 Theorem (Diamond Property [FL78, LV80]) Let M = (E,F ) be an oriented
matroid and X,Y ∈ F̂ such that X� Y andrankM(Y) − rankM(X) = 2. Then there
exist exactly two covectors Z1, Z2 ∈ F with the property X≺ Zi ≺ Y for i ∈ {1, 2}.

The diamond property is called like that because of the diamond-like shape formed by
X, Z1, Z2,Y in the face lattice (see Figure 0.4).

X

Z1 Z2

Y

Figure 0.4: Diamond property

Proof of Theorem 0.7.13Consider X,Y ∈ F̂ such thatX � Y and rankM(Y) −
rankM(X) = 2. By Theorem 0.7.10 there existsZ = Z1 ∈ F̂ such thatX ≺ Z ≺ Y,
which is a maximal chain. ObviouslyX, Z ∈ F , and by Lemma 0.7.6 isS := X0 \ Z0 a
parallel class ofF /Z0.
If Y = 1 thenZ is a tope and the question is how many topesZi satisfyX ≺ Zi ; sinceS
is a parallel class ofF /Z0 and hence ofF asZ0 is the set of loops ofM, Z1 := Z and
Z2 := X ◦ (−Z) ∈ F are the only two topes with this property (note that (F1) and (F2)
are needed forZ2 ∈ F ).
If Y 6= 1 then (by Lemma 0.7.6)Z0 \ Y0 is a parallel class ofF /Y0. By conformal
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elimination (F3c) applied toY, −Z, and S = X0 \ Z0 ⊆ D(Y,−Z) = Z there exist
e ∈ S and Z̃ ∈ F such thatZ̃e = 0 and Z̃S � YS and Z̃ f = (Y ◦ (−Z)) f for all
f ∈ E \ D(Y,−Z) = Z0. ReplacingZ̃ by X ◦ Z̃ does not affect these properties since
X = D(Y,−Z) \ S. ThenX ≺ Z̃ ≺ Y (remark thatZ0 \ Y0 ⊆ Z̃) andZ 6= Z̃. Since
Y0 ⊆ Z̃0 ande ∈ Z̃0 ∩ S, whereS is a parallel class ofF /Y0, Lemma 0.7.5 implies
Z̃S = 0, henceX0 ⊆ Z0 ∪ Z̃0. Assume thatX ≺ W ≺ Y for someW ∈ F . Then there
existse′ ∈ X0 \ Y0 such thatWe′ = 0, hencee′ ∈ (Z0 ∪ Z̃0) \ Y0. SinceZ0 \ Y0 and
Z̃0 \ Y0 are parallel classes ofF /Y0 andY0 ⊆ W0, Lemma 0.7.5 impliesZ0 ⊆ W0 or
Z̃0 ⊆ W0, henceZ = W or Z̃ = W.

It is not difficult to see the following:

0.7.14 Lemma (Oriented Matroids of Rank 1 and 0)The face lattice of an oriented
matroid(E,F ) of rank 1 has exactly the form of a diamond, where X= 0, Z1 = −Z2,
and Y= 1. The face lattice of an oriented matroid of rank 0 only consists of0 ≺ 1.

0.8 Oriented Matroid Programming

Oriented matroid programming is the abstraction of linear programming in the setting
of oriented matroids. The original work of Bland [Bla77] discusses oriented matroid
programming in terms of dual pairs of oriented matroids, the primal presentation which
we give in the following is due to Fukuda [Fuk82]. Our introduction is very short, for
more details see Chapter 10 in [BLVS+99] and the references cited in this section. We
will need oriented matroid programming in the proof of Theorem 1.3.1.

Remember that for a sign vectorX ⊆ {−,+, 0}E we write X ≥ 0 if Xe ∈ {+, 0} for all
e ∈ E, and similarlyX ≤ 0 if −X ≥ 0. The same notation is also used for single signs
(e.g.,Xe ≥ 0).

0.8.1 Definition (Oriented Matroid Program) Let M = (E,F ) be an oriented matroid
and f, g ∈ E two distinct elements. LetX, Z be sign vectors onE.

• X is calledfeasibleif X ∈ F andX \ f ≥ 0 andXg = +.

• Z is calleda directionif Z ∈ F andZg = 0.

• Z is calledan unbounded directionif Z is a direction,Z \ f ≥ 0, andZ f = +.

• For a feasibleX, we call Z an augmenting direction for Xif Z is a direction with
(X ◦ Z) \ f ≥ 0 andZ f = +.

• X is calledoptimal if X is feasible and there is no augmenting direction forX.

The oriented matroid programOMP(M, g, f ) is the problem to find an optimal sign
vectorX.
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0.8.2 Definition Let M = (E,F ) be an oriented matroid andf, g ∈ E, f 6= g. Consider
P := OMP(M, g, f ). P is calledfeasibleif there exists a feasibleX for P , unbounded
if P is feasible and there exists an unbounded direction forP , andoptimal if there exists
an optimalX for P . If P is not feasible thenP is calledinfeasible.

0.8.3 Lemma (OMP Induction) LetM = (E,F ) be an oriented matroid and f, g ∈ E,
f 6= g. ConsiderP := OMP(M, g, f ) and e ∈ E \ { f, g}, and define the oriented
matroid programsP \ e := OMP(M \ e, g, f ) andP /e := OMP(M/e, g, f ). Then:

(i) If P \ e optimal andP /e optimal thenP optimal.

(ii) If P \ e optimal andP /e infeasible thenP optimal or infeasible.

(iii) If P \ e unbounded andP /e optimal thenP unbounded or optimal.

(iv) If P \ e unbounded andP /e infeasible thenP unbounded or infeasible.

Proof (i) Let X ∈ F be such thatX \ e is an optimal solution ofP \ e, and letX̃ ∈ F
be such thatX̃ \ e is an optimal solution ofP /e, henceX̃e = 0. Assume thatX
is not an optimal solution ofP . If Xe ≥ 0 thenX is feasible, so there exists an
augmenting directionZ ∈ F for X, but then isZ \ e an augmenting direction for
X \ e, in contradiction to the optimality ofX \ e for P \ e. HenceXe = −. Apply
covector elimination (F3) to−X, X̃, andg. There existsZ ∈ F such thatZg = 0
andZh = ((−X)◦ X̃)h for everyh ∈ E \ D(−X, X̃), especiallyZX0 ≥ 0, ZX̃0 ≤ 0,
andZe = +. The optimality ofX \ e implies thatZ f ≤ 0. Assume that̃X is not
an optimal solution ofP . Then there exists̃Z ∈ F such thatZ̃g = 0, Z̃ f = +,
Z̃X̃0 ≥ 0, andZ̃e = + (because of̃Xe = 0 and the optimality of̃X for P /e). Apply
covector elimination (F3) to−Z, Z̃, ande. There existŝZ ∈ F such thatẐe = 0,
Ẑg = 0, ẐX̃0 ≥ 0, andẐ f = +, in contradiction to the optimality of̃X \ e for P /e.

(ii) Let X ∈ F be such thatX \ e is an optimal solution ofP \ e but not ofP , hence
Xe = − as in (i). Assume thatP /e is infeasible, but notP , i.e., there exists̃X ∈ F
such thatX̃g = +, X̃ \ f ≥ 0, andX̃e = +. Apply covector elimination (F3) toX,
X̃, ande. There existsZ ∈ F such thatZe = 0, Z \ f ≥ 0, Zg = +. This implies
thatP /e is feasible, a contradiction.

(iii) Let Z ∈ F be such thatZg = 0, Z f = +, andZ \ e ≥ 0. Let X ∈ F be such
that X \ e is an optimal solution ofP /e, so Xg = +, X \ f ≥ 0, andXe = 0.
Assume thatP is not unbounded and not optimal. ThenZe = −, and there exists
Z′ ∈ F such thatZ′

f = +, Z′
g = 0, andZ′

X0 ≥ 0. Furthermore, the optimality
of P /e implies Z′

e 6= 0, henceZ′
e = +. Apply covector elimination (F3) toZ, Z′,

ande. There existsZ̃ ∈ F such thatZ̃e = 0, Z̃g = 0, Z̃ f = +, and Z̃X0 ≥ 0, a
contradiction to the optimality ofX for P /e.

(iv) Let Z ∈ F be such thatZg = 0, Z f = +, and Z \ e ≥ 0. Assume thatP is
not unbounded, henceZe = −. If P is feasible then there existsX ∈ F such that
Xg = + andX \ f ≥ 0. AsP /e is infeasible,Xe = +. Apply covector elimination
(F3) to Z, X, ande. There existsZ̃ such thatZ̃e = 0, Z̃g = +, and Z̃ \ f ≥ 0, a
contradiction to the assumption thatP /e is infeasible.
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The following theorem is closely related to the duality theorem of oriented matroid pro-
gramming [Law75, Bla77]. The primal presentation as given here follows [Fuk82].

0.8.4 Theorem (Fundamental Theorem of OMP)Every oriented matroid program
P = (M, g, f ) is exactly one of optimal, unbounded, or infeasible.

Proof The proof is by induction on|E| and mainly based on the OMP induction (see
Lemma 0.8.3). For|E| = 2 is E = { f, g}. Assume thatP is feasible but not unbounded:
there existsX ∈ F such thatXg = +, and there is noZ ∈ F such thatZg = 0 and
Z f = +. Therefore,X is an optimal solution forP .
Assume|E| > 2. Choose anye ∈ E \ { f, g}. By induction we assume thatP \ e and
P /e both are one of optimal, unbounded, or infeasible. Observe that ifP \ e infeasible
then alsoP andP /e. Furthermore, ifP /e unbounded then alsoP andP \ e. Together
with the inductive result of Lemma 0.8.3 this implies in all cases thatP is one of optimal,
unbounded, or infeasible:

P /e
optimal unbounded infeasible

optimal
optimal

Lemma 0.8.3 (i)
(not possible)

optimal or
infeasible

Lemma 0.8.3 (ii)

P \ e unbounded
unbounded or

optimal
Lemma 0.8.3 (iii)

unbounded
unbounded or

infeasible
Lemma 0.8.3 (iv)

infeasible (not possible) (not possible) infeasible

0.9 Basis Orientations and Chirotopes

This section introduces basis orientations and chirotopes. We will use chirotopes for a
compact encoding of oriented matroids in Chapter 6. Chirotopes can be characterized by
so-called Grassmann-Pl¨ucker relations (see Definition 3.5.3 in [BLVS+99]) which gives
again another equivalent set of axioms of oriented matroids (we do not discuss this).

0.9.1 Definition (Ordered Sets)Let Sbe a finite set. We write(S) for some fixed (linear)
order of the elements inS. If π is a permutation onS thenπ(S) denotes the ordered set
obtained from(S) by reordering the elements according toπ . For elementse ∈ S, f 6∈ S
we denote by(S : e → f ) the ordered set obtained from(S) whene is replaced byf at
the same position, keeping the relative ordering of the other elements. For a setS of finite
sets define(S) := {(S) | S ∈ S} to be the set of all ordered sets obtained by fixing an order
(in every possible way) for allS ∈ S.
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A basis orientation is the sign of an abstract determinant of a basis: Consider a matrix
A of full column rank and a subsetB of the column index set which corresponds to a
basis ofA. The determinant of the corresponding submatrix ofA is non-zero, i.e., has
sign− or +. The determinant is defined for a specific ordering of the basis vectors, and a
permutationπ of the columns inB will multiply the sign of the determinant with sign(π),
which is the sign of the permutation defined in the usual way (the sign of identity is+,
and by any transposition of two elements the sign is reversed). In this sense, the sign of
the determinant is an alternating function. For the following we use the arithmetic of signs
which is defined by+ · + = − · − = + and+ · − = − · + = −.

0.9.2 Lemma Let M = (E,F ) be an oriented matroid andD its set of cocircuits. For
every basis B∈ B and every e∈ B there exist exactly two cocircuits X,−X ∈ D such
that B\ e ⊆ X0; then Xe 6= 0.

Proof Use the definition of bases, and cocircuit axiom (C2).

0.9.3 Definition (Fundamental Cocircuit) Let M = (E,F ) be an oriented matroid and
D its set of cocircuits. For a basisB ∈ B ande ∈ B we call the cocircuitX ∈ D
determined byB \e ⊆ X0 andXe = + the fundamental cocircuit ofM w.r.t. B and eand
denote it byX(B, e).

0.9.4 Definition (Basis Orientation of an Oriented Matroid) Let M = (E,F ) be an
oriented matroid andD its set of cocircuits. LetB be the set of bases of the underlying
matroidM. A mapχ : (B) → {−,+} is calleda basis orientation ofM if

(B0) χ is alternating, i.e.,χ(B) = sign(π) · χ(π(B)) for all (B) ∈ (B) and all permu-
tationsπ of B,

(B1) for all (B) ∈ (B), e ∈ B, f 6∈ B such thatB \ e∪ f ∈ B,
χ(B : e → f ) = Xe · X f · χ(B), whereX = X(B, e) ∈ D is the fundamental
cocircuit w.r.t.B ande (or, equivalently, its negative).

0.9.5 Theorem (Las Vergnas [LV75, LV78a])Every oriented matroid has exactly two
basis orientationsχ and−χ .

Proof The proof follows essentially Lawrence [Law82], but does not use any duality
arguments; instead we use cocircuit elimination. The proof is by induction on|E|. The
case|E| = r is trivial as there is only one basis. Assume|E| > r . Let B̂ ∈ B be a
basis ofM and setχ(B̂) := +. We have to prove that this determinesχ in a unique and
consistent way. Choose anya ∈ E \ B̂ and considerM \ a. Sincea 6∈ B̂, a is not a
coloop ofM, and by Corollary 0.4.9 (i) rank(M \ a) = rank(M). Furthermore, the set
of bases ofM \ a is the set of those basesB of M for which a 6∈ B. By induction, there
exists a unique basis orientationχ ′ for M \ a with χ ′(B̂) = +. We setχ(B) := χ ′(B)
for all ordered bases(B) of E which do not containa. Let (B) be an ordered basis
of M that containsa and X̃ := X(B, a) the fundamental cocircuit w.r.t.B anda. Set
χ(B) := X̃a · X̃e · χ(B : a → e) for somee ∈ X̃ \ a (note thatX̃ \ a 6= ∅ sincea is not
a coloop,B \ a ∪ e is a basis, and the definition ofχ(B) is independent from the choice
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of e sinceχ satisfies (B1) for all ordered bases ofE which do not containa). By this,χ
is defined for all ordered bases ofE, andχ satisfies (B0) by induction and by the way of
the definition for the ordered sets which containa.
It remains to prove (B1) fore, f ∈ E, e 6= f . If a = e or a = f then (B1) follows
from the definition ofχ . Assume for the followinge 6= a and f 6= a. Consider a basis
B ∈ B such thata ∈ B, e ∈ B, f 6∈ B, and B \ e ∪ f ∈ B. We have to show that
χ(B : e → f ) = Xe · X f · χ(B), whereX = X(B, e).
In thefirst case f 6∈ spanM(B \ a). Then isB \ a ∪ f a basis, and by definition

χ(B) = Xaf
a · Xa f

f · χ(B : a → f ) for Xa f = X(B, a),

χ(B : a → f : e → a) = Xae
a · Xae

e · χ(B : a → f ) for Xae = X(B \ e∪ f, a).

By cocircuit elimination (C3) applied toXa f , −Xae, anda there existsXef ∈ D such
that Xef

a = 0 andXef
h ∈ {Xaf

h ,−Xae
h , 0} for all h ∈ E, henceB \ e ⊆ Xef and therefore

Xef = ±X(B, e) and Xef
e = −Xae

e and Xef
f = Xa f

f . In combination this leads to

χ(B : e → f ) = −χ(B : a → f : e → a) = Xef
e · Xef

f · χ(B), which proves the claim
in the first case.
In thesecond case f∈ spanM(B \ a). SetY := X(B, a) ∈ D , thenYf = 0. Choose any
g ∈ Y \ a, thenB \ a ∪ g ∈ B andB \ {a, e} ∪ { f, g} ∈ B. Similar to the first case, we
compose the replacement as(B : e → f ) = (B : a → g : e → f : g → a) and use
again cocircuit elimination (once ona and once ong) to prove the claim. We leave the
details to the reader.

0.9.6 Definition (Chirotope) Let M = (E,F ) be an oriented matroid. Setn := |E| and
r := rank(M). We call{χ,−χ} the chirotope ofM if χ is a map defined on all ordered
subsets(S) of E with cardinalityr such thatχ , restricted to the set of ordered bases of
M, is a basis orientation ofM andχ(S) = 0 if S is not a basis ofM.

0.9.7 Proposition Let M = (E,F ) be an oriented matroid of rank r. The chirotope of
M (together with E and r) determinesM.

Proof Let χ be one of the two maps in the chirotope ofM. The set of basesB of
M is determined as the set ofr -subsetsB of E for which χ(B) 6= 0. A sign vector
X ∈ {−,+, 0}E is a cocircuit ofM if and only if there exists a basisB ∈ B and an
elemente ∈ B such that(B \ e) ⊆ X0, Xe 6= 0, andX f = Xe · χ(B) · χ(B : e → f ) for
all f 6∈ B.

For the rest of this section we consider the chirotope of the dual of an oriented matroid.
Let M = (E,F ) be an oriented matroid andB a basis ofM. By Proposition 0.5.11,
N := E\B is a basis of the dualM∗. Lete ∈ B and f ∈ N, and consider the fundamental
cocircuit X = X(B, e) ∈ F and the so-calledfundamental circuit Y= Y(N, f ) ∈ F ∗
which is characterized byN \ f ⊆ Y0 andYf = + (consider Lemma 0.9.2 forM∗). By
definition,X ∗ Y, furthermoreX ∩ Y ⊆ {e, f } andXe = Yf = +, henceX f = −Ye. Let
χ andχ∗ be basis orientations ofM andM∗, respectively. Then,

χ∗(N : f → e) = Yf · Ye · χ∗(N) = −Xe · X f · χ∗(N),

which is the dual form of (B1). This leads to the following simple rule for the computation
of the chirotope of the dual from the primal:
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0.9.8 Lemma LetM = (E,F ) be an oriented matroid andχ one of the two maps in the
chirotope ofM. Consider a fixed order of E. Then, one of the two maps in the chirotope
of M∗ is determined by

χ∗(N) = sign(π(B, N)) · χ(B),
where(B) = (b1, . . . , br ) and (N) = (br +1, . . . , bn) are ordered bases ofM andM∗,
respectively, where N= E \ B, andπ(B, N) is the permutation to sort(b1, . . . , bn)

according to the fixed order of E.

Proof Note thatχ∗(N) 6= 0 if and only if N is a basis ofM∗, which is the case if and
only if B = E \ N is a basis ofM (see Proposition 0.5.11), hence if and only ifχ(B) 6= 0
for any order ofB.
Let χ∗ be such thatχ∗(N) = sign(π(B, N)) · χ(B) for all ordered bases(B) and(N)
of M andM∗, respectively, whereN = E \ B. We have to show thatχ∗, restricted to
the set of ordered bases ofM∗, is a basis orientation ofM∗. Let (B) = (b1, . . . , br ) and
(N) = (br +1, . . . , bn) be ordered bases ofM andM∗, respectively, such thatN = E \ B.
Considere ∈ B and f ∈ N. By assumption onχ∗ and property (B1) ofχ ,

χ∗(N : f → e) = − sign(π(B, N)) · χ(B : e → f )

= − sign(π(B, N)) · Xe · X f · χ(B)
= −Xe · X f · χ∗(N),

whereX = X(B, e). This is a necessary condition onχ∗ (see above), and it determines
χ∗ up to negative, which implies the claim.
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Chapter 1

Topes and Tope Graphs

1.1 Introduction and Problem Statements

Chapter 1 investigates topes and tope graphs of oriented matroids and their relation to
covectors and the big face lattice of oriented matroids. The two main problems consid-
ered in this chapter are thecharacterization problemand thereconstruction problemof
tope graphs. Partially we review known results from [FH93] and [FST91]. The main ex-
tensions of these results are the separability of uncut topes (see Theorem 1.3.1) and the
reconstruction algorithms of faces and topes from cocircuits.

We first define some basic notions w.r.t. graphs, after this we introduce tope graphs, ad-
dress the problems discussed in this chapter, and give an overview of Chapter 1.

A graph G = (V(G), E(G)) is a pair of a finite set ofvertices V(G) and a set ofedges
E(G) that are represented as unordered pairs of vertices, i.e., all edges are undirected. For
a connected graphG we will denote bydG(v, w) the (combinatorial) distance between
two verticesv,w ∈ V(G) (i.e., the minimal number of edges in a path connectingv and
w) and by diam(G) the diameter ofG (i.e., the maximal distancedG(v, w) in G).

Two graphsG, G′ are calledisomorphicif there exists a bijectionφ : V(G) → V(G′)
such that{φ(v), φ(w)} ∈ E(G′) if and only if {v,w} ∈ E(G). Then we callφ a graph
isomorphism. If G = G′, then we callφ a graph automorphism; the set of all automor-
phisms is denoted by Aut(G). If the vertices ofG are not labeled, then we usually identify
graphs that are isomorphic, e.g., we say thatG and G′ are equalif they are isomorphic.

The first class of graphs, which we discuss in this chapter, are the tope graphs of oriented
matroids. In a pseudosphere arrangement (see Section 0.1) topes correspond to regions of
maximal dimensiond, and two topes are adjacent if they have a common(d − 1)-face.
The following definition of tope graphs also applies to sets of sign vectors which are not
tope sets of oriented matroids, which will be important for further investigations:

1.1.1 Definition (Tope Graph) Let (E, T ) be a pair of a finite setE andT ⊆ {−,+, 0}E
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such that all sign vectors inT have the same support.The tope graph of(E, T ) is a graph
G with exactly|T | vertices that can be associated by a bijectionL : V(G) → T such
that{x, y} is an edge inE(G) if and only if the set of separating elementsD(L(x),L(y))
is a parallel class ofT . If T is the tope set of an oriented matroidM we also callG the
tope graph ofM.

We will call a bijectionL : V(G) → T like in Definition 1.1.1 anassociating bijection.

An example of an oriented matroid (illustrated by a pseudosphere arrangement) and its
tope graph is given in Figure 1.1.

1− +
2

+
−

3+
−

4

+ −A

A

B
B

C

C

D

D

Figure 1.1: Adjacent regions in pseudosphere arrangement and tope graph

For oriented matroids(E,F ) the above definition of a tope graph falls together with the
explanation given before: the parallel classes of the tope setT are the same as the parallel
classes ofF , and for X,Y ∈ T there exists a(d − 1)-face Z ∈ F such thatZ ≺ X
and Z ≺ Y if and only if Z is of the formZ \ D := X \ D = Y \ D and ZD = 0 for
D = D(X,Y) being a parallel class ofT . This can be proved by covector elimination
and observing Lemma 0.7.6 (for more a more general result which includes this case see
Lemma 1.5.6). Hence, the tope graph of an oriented matroid(E,F ) with set of topes
T is a graphG with exactly fd = |T | vertices that can be associated by a bijection
L : V(G) → T to the elements ofT such that{x, y} is an edge inE(G) if and only if
L(x) andL(y) have a common lower neighbor in the face lattice (fi denotes the number
of faces of dimensioni ). There is a one-to-one correspondence of(d − 1)-dimensional
faces and the edges inG, hencefd−1 = |E(G)|.
We have introduced relabeling, reorientation, and isomorphism of oriented matroids in
Section 0.1. We define these notions in a more formal way again, by this also extending
them to arbitrary sets of sign vectors. Remember the definition of loops and parallel
elements in Definition 0.7.4.
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1.1.2 Definition (Relabeling, Reorientation, Isomorphism)Let F be a set of sign vec-
tors on a finite ground setE. A relabeling ofF is a set of sign vectorsF ′ on a finite
ground setE′ such that there is a bijectionφ : F → F ′ and a bijectionψ between the
parallel classes of non-loop elements ofF andF ′ such thatXe = φ(X)e′ for all X ∈ F
and alle ∈ E, e′ ∈ E′ wheree, e′ are not loops ofF andF ′, respectively, and the parallel
classes ofe ande′ are associated byψ . A reorientation ofF is a set of sign vectors of
the form{ S X | X ∈ F } for someS ⊆ E, where S X is the sign vector obtained from
X by reversing the signs of all elements inS. We also call the map which transformsF
into a relabeling (or reorientation) a relabeling (or reorientation, respectively). A set of
sign vectorsF ′ is calledisomorphic toF if F ′ can be obtained fromF by relabeling
(first) and reorientation. Anisomorphism ofF is a map which transformsF into a set
which is isomorphic toF . Reorientation, relabeling, and isomorphism define equivalence
relations for sets of sign vectors. For a pairM = (E,F ) of a finite ground setE and a
set of sign vectors onE these relations define itsrelabeling classLC(M), reorientation
classOC(M), andisomorphism classIC(M).

Relabeling and hence isomorphism allows the introduction and deletion of parallel ele-
ments and loops. If all loops and redundant parallel elements are deleted, one obtains an
isomorphic set of sign vectors without loops such that all parallel classes contain only one
element:

1.1.3 Definition (Simple, Simplification) Let F be a set of sign vectors on a finite
ground setE. F is calledsimpleif there are no loops and no parallel elementse 6= f . An
oriented matroid(E,F ) is calledsimpleif F is simple.A simplification ofF is a simple
set of sign vectors which is isomorphic toF .

By the definition of tope graphs, it follows:

1.1.4 Lemma The tope graph of a setT is equal to the tope graph of any simplification
of T . More general, the tope graphs of any isomorphic sets of sign vectors are equal.

The above lemma states that the discussion of tope graphs may be restricted to simple sets
T ; this will not affect the generality of the results.

The present chapter mainly concerns the following two problems:

Characterization Problem: Given a graph G,
decide whether G is the tope graph of some oriented matroid.

Reconstruction Problem:Given a tope graph G of some oriented matroid,
find an oriented matroidM such that G is the tope graph ofM.

Our investigations concern algorithmic solutions and their complexities. For our com-
plexity analyses we assume that every elementary operation (such as an addition or com-
parison of single elements) can be computed in constant time.
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Whereas the reconstruction problem can be solved in polynomial time by a simple algo-
rithm (see Section 1.4), the answer to the characterization problem is not that easy. In
terms of graphs, there is no polynomial characterization of tope graphs of oriented ma-
troids (unless rank is at most 3, see [FH93]), however, there exist algorithms which solve
the characterization problem by the way of construction of sign vectors (see Section 1.7).
We give in the following a more detailed overview of the results presented in this chapter.

In Section 1.2 we will discuss some basic properties of tope sets and tope graphs, intro-
ducing L1-systems and acycloids which are generalizations of the tope sets of oriented
matroids. Tope graphs ofL1-systems and acycloids are well studied and have good char-
acterizations (e.g., see [Djo73, FH93]).

We will prove a new separability property of tope graphs of oriented matroids in Sec-
tion 1.3. This separability property, which can be checked easily, is not valid for general
L1-systems or acycloids, however, it is also not sufficient to characterize tope graphs of
oriented matroids. Nevertheless, the separability property will be helpful again in Chap-
ter 4 for the developement of algorithms for the generation of oriented matroids.

In Section 1.4 we use properties from Section 1.2 to design a simple algorithm which
reconstructs tope sets of oriented matroids (or, more general, acycloids) from a given tope
graph. This orientation reconstruction is unique up to isomorphism, which also proves
that the tope graph of an oriented matroid characterizes its isomorphism class. This also
implies that the big face lattice of an oriented matroid characterizes its isomorphism class:
Tope graphs (or face lattices) of oriented matroids are representations of the isomorphism
classes of oriented matroids.

The known characterizations of tope sets of oriented matroids (e.g., see [BC87, Han90,
dS95]) do not lead to algorithms which check in polynomial time whether a given set
of sign vectors is the tope set of an oriented matroid. The same is true for tope graphs
of oriented matroids: there is no direct (graph theoretical) characterization which can be
checked in polynomial time (of course, the characterization problems of tope sets and tope
graphs are connected by the polynomial orientation reconstruction). However, as a result
of Fukuda, Saito, and Tamura [FST91], tope sets can be characterized in polynomial time
using algorithms which reconstruct faces from tope sets. We present such algorithms in
Section 1.5, present in Section 1.6 algorithms for the reconstruction of faces and topes
from cocircuits, and combine all these in Section 1.7 for an algorithm which characterizes
tope sets of oriented matroids in polynomial time.

1.2 Properties of Topes Graphs

We discuss in this section some basic properties of tope graphs of oriented matroids.
These are the properties of the tope graphs of so-calledL1-systems and acycloids which
generalize tope sets of oriented matroids [Tom84, Han90, Han93].

1.2.1 Definition (L1-System, Acycloid [Tom84]) A pair (E, T ) of a finite setE and a
setT ⊆ {−,+}E is calledan L1-system(alsoL1-embeddable system) if
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(A1) for all X,Y ∈ T such thatX 6= Y there existe ∈ D(X,Y) andZ ∈ T such that
Ze = −Xe andZ \ e = X \ e. (reorientation)

If in addition to the reorientation property also

(A2) if X ∈ T then−X ∈ T , (symmetry)

then we call(E, T ) an acycloid(or simple acycloid).

A basic observation is the following [Han90]:

1.2.2 Lemma Let (E,F ) be a simple oriented matroid andT its tope set. Then(E, T )
is an acycloid.

Proof Since there are no loops, the set of topes satisfiesT ⊆ {−,+}E. As (E,F ) is
simple, (A1) is the same as the reorientation property of tope sets of oriented matroids (see
Corollary 0.7.7). The symmetry (A2) is obviously implied by the symmetry of covectors
(F1).

The following is a very important characterization of edges in tope graphs ofL1-systems
(and hence oriented matroids) [FH93]:

1.2.3 Lemma If (E, T ) is an L1-system and G its tope graph with associating bijection
L : V(G) → T , then E(G) = {{x, y} ∣∣ |D(L(x),L(y))| = 1

}
.

Proof The claim follows directly from the definition of a tope graph and the fact thatL1

systems are simple, i.e., all parallel classes contain exactly one element.

The above lemma is used to prove the following important property of tope graphs of
L1-systems [FH93], which states that these graphs can be embedded isometrically in
some (higher-dimensional) hypercube, where isometrically means that distances in the
tope graph are the same as in the hypercube:

1.2.4 Proposition If (E, T ) is an L1-system and G its tope graph with associating bijec-
tion L : V(G) → T , then dG(x, y) = |D(L(x),L(y))| for all x, y ∈ V(G).

Proof Let (E, T ) be anL1-system,G its tope graph, andL : V(G) → T an associating
bijection. We prove the claim by induction on|D(L(x),L(y))|. |D(L(x),L(y))| = 0
clearly impliesx = y. For |D(L(x),L(y))| = 1 the claim follows from Lemma 1.2.3.
For x, y ∈ V(G) set X := L(x) andY := L(y), and assume|D(X,Y)| > 1. Since
X 6= Y, there existe ∈ D(X,Y) and Z ∈ T such thatZe = −Xe and Z \ e = X \ e.
There isz ∈ V(G) such thatZ = L(z). Obviously|D(X, Z)| = 1 and|D(Z,Y)| =
|D(X,Y)|− 1, sodG(x, z) = 1 and by inductiondG(z, y) = |D(X,Y)|− 1. This implies
dG(x, y) ≤ dG(x, z) + dG(z, y) = |D(X,Y)|. On the other hand Lemma 1.2.3 implies
dG(x, y) ≥ |D(X,Y)|.
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1.2.5 Corollary ([FH93]) For every vertexv in the tope graph G of an acycloid there
exists a unique vertexv ∈ V(G) such that dG(v, v) = diam(G).

Proof Let L : V(G) → T ⊆ {−,+}E be an associating bijection. By definition of an
acycloid−L(v) ∈ T . Let v ∈ V(G) be determined byL(v) = −L(v). By Propo-
sition 1.2.4,dG(v, v) = |E| is the maximal distance between any vertices inG and is
attained if and only if the vertices correspond to negative sign vectors inT .

1.2.6 Definition (Antipode) Let G be the tope graph of an acycloid andv ∈ V(G). We
call the vertexv ∈ V(G) determined bydG(v, v) = diam(G) the antipode ofv in G.

Lemma 1.2.3 says that for every edge{x, y} in the tope graphG of anL1-system(E, T ),
where some associating bijectionL : V(G) → T is given, there is an elemente ∈ E such
thatL(x) = e L(y). We introduce the notion of anedge classfor the collection of edges
which corresponds to the same element. It will turn out that edge classes are independent
from L.

1.2.7 Definition (Edge ClassEe; C(v, w)) Let (E, T ) be anL1-system andG its tope
graph with associating bijectionL : V(G) → T . Fore ∈ E we definethe edge class of
e by

Ee := {{v,w} ∈ E(G)
∣∣ D(L(v),L(w)) = {e}}.

For an edge{v,w} ∈ E(G) we define

C(v, w) := {x ∈ V(G) | dG(x, v) < dG(x, w)}.

It is obvious that edge classes partition the set of edges. For an illustration see Figure 1.1,
where edges of the same edge class are parallel. These edge classes are defined by the
graphG itself, independent fromL (this result is essentially based on work of Djokovi´c
[Djo73]):

1.2.8 Lemma Let G be the tope graph of an L1-system(E, T ) and L : V(G) → T
an associating bijection, furthermore let{v,w} ∈ E(G) be an arbitrary edge in G, say
{v,w} ∈ Ee for some e∈ E. Then

C(v, w) = {x ∈ V(G) | L(x)e = L(v)e}
and

Ee = {{v′, w′} ∈ E(G) | v′ ∈ C(v, w) andw′ ∈ C(w, v)
}
.

Proof Set V := L(v), W := L(w), and X := L(x) for somex ∈ V(G). By Propo-
sition 1.2.4,dG(x, v) = |D(X, V)| and dG(x, w) = |D(X,W)|, hencedG(x, v) <
dG(x, w) if and only if |D(X, V)| < |D(X,W)|, which is because ofD(V,W) = {e}
equivalent toXe = Ve = −We. This proves thatx ∈ C(v, w) if and only if Xe = Ve.
Set V ′ := L(v′), W′ := L(w′) for some{v′, w′} ∈ E(G). As v′ ∈ C(v, w) and
w′ ∈ C(w, v) is equivalent toV ′

e = Ve and W′
e = We, D(V,W) = {e} implies

e ∈ D(V ′,W′), hence{v′, w′} ∈ Ee. On the other hand, ife ∈ D(V ′,W′), then (after pos-
sibly interchangingV ′ andW′, which does not change the edge since{v′, w′} = {w′, v′})
V ′

e = Ve andW′
e = We, hencev′ ∈ C(v, w) andw′ ∈ C(w, v).
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We illustrate the results of this section for the case of oriented matroids of rank 2 (di-
mension 1). This case will be important for several later considerations in this thesis, for
example for the characterization of oriented matroids of rank 2 in Corollary 1.4.4.

1.2.9 Proposition (Tope Graph of Oriented Matroid of Rank 2) The tope graph of an
oriented matroid(E,F ) of rank 2 is a cycle of even length2n′, where n′ is the number of
parallel classes inF /E0, where E0 is the set of loops.

Figure 1.2 shows an example of an oriented matroid of rank 2 and its tope graph, where
the gray lines indicate a corresponding central arrangement of lines (i.e., the intersection
of these lines with the unit sphereS1 induces a 1-dimensional sphere arrangement which
realizes the oriented matroid).
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Figure 1.2: Tope graph of an oriented matroid of rank 2

Proof of Proposition 1.2.9 Let M be an oriented matroid of rank 2, and associate the
topes to the vertices of the tope graphG of M by an associating bijectionL : V(G) → T
as in Definition 1.1.1. rank(M) = 2 obviously implies0 6∈ T , and by the symmetry of
covectors (F1) 2n′ = |T | for some integern′ > 0. The edges ofG correspond to the
cocircuits of the oriented matroid. The diamond property 0.7.13 implies that the degree of
every vertex is 2. This implies thatG consists of a set of cycles, and by Proposition 1.2.4
G is connected, i.e.,G has the form of a cycle of length 2n′, where thenn′ = diam(G) =
|E′| for E′ being the ground set of any simplification ofM. By definition,|E′| equals the
number of parallel classes of non-loop elements.

In tope graphs of oriented matroids of rank 2 every edge class contains two edges which
are have opposite positions in the cycle.

1.3 Separability of Uncut Topes

In this section we strengthen the results of Section 1.2 and prove a new property of tope
graphs of oriented matroids which can be checked easily from the graph and which will
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be helpful later for the design of generation algorithms. Examples will show that not all
tope graphs of acycloids satisfy the stronger property, but also that it does not characterize
tope graphs of oriented matroids.

We will state our results first in terms of sign vectors and then in terms of tope graphs.
Let M = (E,F ) be a simple oriented matroid with tope setT , and define for an arbitrary
elementf ∈ E

T − := {Z ∈ T | Z f = − and f Z 6∈ T },
T + := {Z ∈ T | Z f = + and f Z 6∈ T },
T 0 := {Z ∈ T | f Z ∈ T },

where f Z is the sign vector obtained fromZ by reversing the sign of elementf . We will
say that the topes inT − andT + arenot cut by for simplyuncut. The motivation for this
name comes from considering sphere arrangements and the deletion minorM \ f . If the
sphereSf is inserted in the arrangement according toM \ f , then some of the regions of
the minor remain unchanged, some arecut by Sf into two new regions. The topes inT −
andT + correspond to regions which remain uncut (either on the− or on the+ side of
Sf ), the topes inT 0 correspond to regions obtained by a cut.

We will show that the vertices inT − (and, by symmetry, similarly the vertices inT +) are
connected in the sense of adjacency in tope graphs:

1.3.1 Theorem Let M = (E,F ) be a simple oriented matroid with tope setT . Choose
an arbitrary element f∈ E. For any two topes X,Y ∈ T − there exists a sequence
X = Z0, . . . , Zk = Y such that Zi ∈ T − for i ∈ {0, . . . , k} and |D(Zi−1, Zi )| = 1 for
i ∈ {1, . . . , k}.

Before we prove this connectedness property we give some remarks. First, we show in
Figure 1.3 an example for the analogousaffinecase where the connectedness in the sense
of Theorem 1.3.1 is not valid (in the example the gray regions are thosed-faces not cut
by the new hyperplanef , and obviouslyX andY are not connected on the− side of f ).
In order to see the connectedness in the sense of Theorem 1.3.1, the line arrangement has
to be embedded on the front side of a sphere with a corresponding extension to the back
side; the uncut regions then become connected through the back part of the sphere (see
also case (i) in Figure 1.6).

An immediate consequence of Theorem 1.3.1 is the separability of uncut topes (note that
because of Lemma 1.2.8 the edge classes ofG are defined byG itself, without associating
bijectionL):

1.3.2 Corollary Let G be the tope graph of an oriented matroid and Ef ⊆ E(G) an edge
class. Denote by V0 the set of vertices incident to some edge in Ef , then the subgraph of
G induced by the vertices V(G) \ V0 has either no or exactly two connected components.

Proof There exists a simple oriented matroidM such thatG is the tope graph ofM with
associating bijectionL : V(G) → T ⊆ {−,+}E. By the definition of edge classes there
exists f ∈ E such thatL mapsV0 to T 0 = {Z ∈ T | f Z ∈ T }. If T \ T 0 6= ∅ then
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f

+−
X

Y

Figure 1.3: Example for non-connectedness in the affine case

Theorem 1.3.1 implies that there are exactly two connected components in the subgraph of
G induced by the verticesV(G) \ V0, one corresponding toT −, the other corresponding
to T +.

The result of Corollary 1.3.2 implies that if there exist uncut topes then they are separated
by the topes which are cut in a− part and a+ part as they belong toT − andT +; the only
ambiguity is the orientation of the corresponding elementf which definesE f .

1.3.3 Definition (Separable Tope Graph)Let G be the tope graph of anL1-system and
E f an edge class inG. We say thatG is separable w.r.t. Ef (or, if an associating bijection
is given such thatf ∈ E defines the edge classE f , G is separable w.r.t. f) if the separa-
bility holds for this edge classE f : the subgraph ofG induced by the verticesV(G) \ V0

has either no or exactly two connected components, whereV0 denotes the set of vertices
incident to some edge inE f . We callG separableif G is separable w.r.t. all edge classes.

We present two examples which show that not all tope graphs of acycloids are separable
(see Figure 1.4), but also that not all separable tope graphs of acycloids are tope graphs of
oriented matroids (see Figure 1.5). Both examples have a ground setE = {1, 2, 3, 4, 5}.
The tope graph in Figure 1.4 is separable only w.r.t. element 1 but not separable w.r.t. 2,
3, 4, or 5, which can be seen by inspection. The acycloid in Figure 1.5 is not an oriented
matroid, but its tope graph is separable. Again, separability is not difficult to see, but the
proof that the acycloid is not an oriented matroid is not obvious. Actually the example
has been found by computer support. A formal proof can be found by use of the method
for the construction of faces from a tope set (see Section 1.5).

We give a sketch of the proof of Theorem 1.3.1. Consider two regionsX andY which are
not cut by the elementf and are on the same side off , say the− side. There exists an
elementg ∈ E \ f that boundsX and does not separateX andY; if we considerg as an
infinity element, we may callX an unbounded region. There are two cases to consider:
(i) Y is also an unbounded region and (ii)Y is not an unbounded region. The two cases
are illustrated in Figure 1.6 showing the− side of f only; note that case (i), restricted
to affine space (i.e., to the+ side ofg), is exactly the example of Figure 1.3. In case
(i) we consider the contraction w.r.t.g and use a non-trivial inductive argument to prove
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Figure 1.4: Acycloid whose tope graph is not separable

that X andY are connected in the sense of Theorem 1.3.1. In case (ii) we show thatY is
connected in the sense of Theorem 1.3.1 to an unbounded regionY′, which is known to be
connected toX because of case (i). The unbounded regionY′ is found using an oriented
matroid program (see Definition 0.8.1) which has an optimal solutionU . The solution
U defines an unbounded cone (hatched with white lines in Figure 1.6) which contains
regions that are all connected in the sense of Theorem 1.3.1.

Proof of Theorem 1.3.1 The proof is by induction on the rank ofM. For some small
rank r , say r ≤ 2, the proof is obviously true (for the case of rankr = 2 see also
Proposition 1.2.9). ConsiderM with rank(M) ≥ 3. If T − = ∅ then the claim is trivially
true, so assumeT − 6= ∅. Let X,Y ∈ T −. Then X f = Yf = − implies X 6= −Y,
and by the reorientation property (A1) (cf. Lemma 1.2.2) applied toX and−Y there is
g ∈ D(X,−Y) = E \ D(X,Y) such thatg X ∈ T . X ∈ T − impliesg 6= f . Obviously
Xg = Yg 6= 0, and without loss of generality assumeXg = Yg = +.

(i) If g Y ∈ T : Consider the contraction minorM/g (i.e., the contraction ofM to faces
which containg in the zero support) which is a (not necessarily simple) oriented
matroid whose rank is rank(M) − 1 (see Corollary 0.4.9 (ii)). Denote bỹM a
simplification ofM/g where the parallel class containingf is represented byf .
Note thatX \ g ∈ M/g andY \ g ∈ M/g, and denote bỹX andỸ their images in
M̃, thenX̃, Ỹ ∈ T̃ −, whereT̃ − is defined forM̃ asT − for M. By induction, there
exists a sequencẽX = Ũ0, . . . , Ũ k = Ỹ in T̃ − such that|D(Ũ i−1, Ũ i )| = 1 for
i ∈ {1, . . . , k}. Consideri ∈ {0, . . . , k}: Ũ i ∈ T̃ − implies that there existUi ∈ T
such thatUi

g = + and g Ui ∈ T , whereŨ i is the image ofUi \g in M̃; furthermore
Ui

f = −, and at most one off U i and { f,g} Ui is in T , i.e., at least one ofUi and

g Ui is in T −. We defineÛ i := Ui if Ui ∈ T −, otherwiseÛ i := g Ui ∈ T −.
SinceÛ0 = X andÛ k = Y, it remains to show that̂Ui−1 andÛ i are connected
within T − for all i ∈ {1, . . . , k} in the sense of the claim.
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Figure 1.5: Acycloid which is not an oriented matroid but whose tope graph is separable
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Figure 1.6: The two cases in the proof of Theorem 1.3.1

Consideri ∈ {1, . . . , k}. By Proposition 1.2.4, there exist two sequencesUi−1 =
V0, . . . ,Vd = Ui and g Ui−1 = W0, . . . ,Wd = g Ui with |D(V j −1, V j )| =
|D(W j −1,W j )| = 1 for all j ∈ {1, . . . , d}, whered = |D(Ui−1,Ui )|. If at least
one of the two sequences fori ∈ {1, . . . , k} lies entirely inT −, the claim follows by
combining all these sequences inT −. Assume that for somei ∈ {1, . . . , k} neither
of the two sequences is entirely inT −, i.e., there exists, t ∈ {0, . . . , d} such that
V ′ := f Vs ∈ T andW′ := f Wt ∈ T . Covector elimination (F3) applied toV ′,
W′, andg implies that there existsZ ∈ F such thatZg = 0 andZe = (V ′ ◦ W′)e
for e 6∈ D(V ′,W′), i.e., Ze = V ′

e = W′
e for e 6∈ D(V ′,W′), especiallyZ f = +.

Note thatD := D(Ui−1,Ui ) is a parallel class ofM/g, soZD = 0, ZD = Û i−1
D , or

ZD = Û i
D, and withD(V ′,W′) ⊆ D ∪ {g} it follows that Z ◦ Û i−1 = f Û i−1 ∈ T

or Z ◦ Û i = f Û i ∈ T , a contradiction.
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(ii) If g Y 6∈ T : We show thatY is connected withinT − in the sense of the claim
to someY′ ∈ T − for which g Y′ ∈ T ; then the claim follows from (i). Without
loss of generality assumeYe = + for all e ∈ E \ { f } (reorientation does not af-
fect connectedness withinT −). Consider the oriented matroid program(M, g, f ),
see Definition 0.8.1. SinceY is feasible for(M, g, f ), and since no unbounded
augmenting directionZ ∈ F exists (otherwiseZ ◦ Y = f Y ∈ T , a contra-
diction), Theorem 0.8.4 implies that there exists an optimal solutionU ∈ F for
(M, g, f ); note thatU \ f ≥ 0, Ug = +, andU f ≤ 0 (sinceU f = + implies
U ◦ Y = f Y ∈ T ). Set V := −U ◦ Y ∈ T . By Proposition 1.2.4, there ex-

ists a sequenceY = W0, . . . ,Wd = V ∈ T such that|D(Wi−1,Wi )| = 1 for
i ∈ {1, . . . , d}, whered = |D(Y, V)|. SinceYg = + andVg = −Ug = −, there
existsk ∈ {1, . . . , d} such thatWi

g = + for i < k andWk
g = −. SetY′ := Wk−1,

then g Y′ = Wk ∈ T , and it remains to show thatWi ∈ T − for i ∈ {1, . . . , k − 1}.
AssumeWi 6∈ T − for somei ∈ {1, . . . , k − 1}, i.e., there existsW′ ∈ T such that
W′ \ f = Wi \ f andW′

f = +. Apply covector elimination (F3) toW′, −U , andg:
There existsZ′ ∈ F such thatZ′

g = 0 andZ′
e = (W′ ◦ −U)e for e 6∈ D(W′,−U),

especiallyZ′
f = +, and, for alle 6= f with Ue = 0, Ve = Ye = +, so alsoW′

e = +
andZ′

e = W′
e = +, i.e., Z′ is an augmenting direction forU , in contradiction to the

optimality ofU .

1.4 Orientation Reconstruction

We discuss now how one can find from a tope graph the underlying acycloid up to iso-
morphism. The results of Section 1.2 lead to an algorithm ACYCLOIDORIENTATIONRE-
CONSTRUCTION(see Pseudo-Code 1.1) which efficiently reconstructs the sign vectors of
an acycloid from a tope graph (almost the same algorithm is also given in [CF93] in the
proof of Theorem 4.1).

1.4.1 Proposition ([CF93]) The algorithm ACYCLOIDORIENTATIONRECONSTRUC-
TION constructs an acycloidT = {L(v) | v ∈ V(G)} ⊆ {−,+}E such that G is the
tope graph ofT with associating bijectionL in time O(n · |V(G)| · |E(G)|), where
n = diam(G) = |E|. T is unique up to labeling and orientation of the elements in E.

For an oriented matroid, the complexity of ACYCLOIDORIENTATIONRECONSTRUCTION

is O(n · fd · fd−1), as fd = |V(G)| and fd−1 = |E(G)|.
Proof of Proposition 1.4.1 Considerx ∈ V(G) and its antipodex, which is determined
by dG(v, v) = diam(G) =: n (see Corollary 1.2.5). By Proposition 1.2.4,x and x
correspond to negative sign vectors in the acycloid, sayL(x) = X = (+ . . . + ) and
L(x) = −X = (− . . . − ) for X ∈ {−,+}E with E = {1, . . . , n} (we are free to
label the elements arbitrarily, also to choose some initial orientation forX). Let x =
x0, x1, . . . , xn = x be a shortest path connectingx andx. Because of Proposition 1.2.4,
|D(L(xe),L(x))| = e for e ∈ E, and as we still are free to permuteE arbitrarily, we
can setL(xe) f = + if f > e and L(xe) f = − otherwise. By this allL(xe) are
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Input: A graphG which is tope graph of some acycloid.
Output: For every v ∈ V(G) a sign vectorL(v) ∈ {−,+}E, where
E = {1, . . . , n} with n = diam(G).

begin ACYCLOIDORIENTATIONRECONSTRUCTION(G);
choose anyx ∈ V(G) and determinex ∈ V(G);
choose any shortest pathx = x0, x1, . . . , xn = x connectingx andx;
for everye ∈ {1, . . . , n} and everyv ∈ V(G) do

if dG(v, xe−1) < dG(v, xe) then
L(v)e := +

else
L(v)e := −

endif
endfor;
return L(v) for all v

end ACYCLOIDORIENTATIONRECONSTRUCTION.

Pseudo-Code 1.1: Algorithm ACYCLOIDORIENTATIONRECONSTRUCTION

defined, and we will see that this determines also all remainingL(v) for v ∈ V(G).
Let v ∈ V(G). Then for a correct associating bijectionL, v ∈ C(xe−1, xe) if and only if
L(v)e = L(xe−1)e = + (see Lemma 1.2.8). For the complexity note that the computation
of distances or shortest paths between given vertices costs not more thanO(|E(G)|).

It was first proved by Bj¨orner, Edelman, and Ziegler [BEZ90] that the tope graph deter-
mines an oriented matroid up to isomorphism. This results now follows from the recon-
struction algorithm:

1.4.2 Corollary The tope graph of an acycloid determines the acycloid up to isomor-
phism. As simple oriented matroids are acycloids, the same result is true for tope graphs
of oriented matroids.

1.4.3 Corollary The big face lattice of an oriented matroidM determines its isomor-
phism classIC(M).

Proof Note that the tope graph ofM is determined by the big face lattice.

1.4.4 Corollary (Oriented Matroids of Rank 2) Let M = (E,F ) be an oriented ma-
troid of rank 2, and let n′ be the number of parallel classes inF /E0, where E0 is
the set of loops ofM. ThenM is isomorphic to(E′,F ′) with E′ = {1, . . . , n′} and
F ′ = {0} ∪ D ′ ∪ T ′, where the set of cocircuitsD ′ contains the2n′ sign vectors Xi and
−Xi , where Xi

j = sign(i − j ) for i, j ∈ {1, . . . , n′}, and the set of topesT ′ contains

the 2n′ sign vectors Yi and −Yi , where Yi
j = − if i ≤ j and Yi

j = + otherwise for
i, j ∈ {1, . . . , n′}.
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Proof By Proposition 1.2.9 is the tope graphG of (E,F ) a cycle of length 2n′, and so
is also the tope graph of(E,F ′). Hence, by Corollary 1.4.2,(E,F ) and (E,F ′) are
isomorphic. It is not difficult to see that(E′,F ′) is an oriented matroid. An illustration is
found in Figure 1.2.

1.5 Face Reconstruction from Topes

This section first contains some of the results on the number of faces from Section 2 of
Fukuda, Saito, Tamura [FST91], with some minor extensions. We will use the notion of
faces in place of covectors as we consider their mutual facial relation and their position
w.r.t. the face lattice of the oriented matroid. Furthermore, we show an algorithm from
[FST91] which constructs the set of all oriented matroid facesF from the set of topesT
in time O(n3 f 2

d ), wheren is the cardinality of the ground setE and fd = |T |. Remember
that for a given oriented matroid(E,F ) andi ∈ {−1, . . . , d}, Fi denotes set of faces of
dimensioni in F (which we calli -faces) andfi = |Fi |.
The main result used in the following is

1.5.1 Theorem ([FST91])Let M be an oriented matroid of dimension d:= dim(M).
Then fi ≤ (d

i

)
fd for all i ∈ {0, . . . , d}.

Proof See Theorem 1.1 in [FST91].

1.5.2 Corollary ([FST91]) For any oriented matroidM of dimension d holds f0 ≤ fd.

Finally we need a lower bound on the number of topes in an oriented matroid:

1.5.3 Lemma For any oriented matroidM of dimension d holds2d+1 ≤ fd.

The above lower bound is better than the one given in [FST91], which is
(d

i

) ≤ fd for any
i ∈ {0, . . . , d}.
Proof of Lemma 1.5.3 Let M = (E,F ) be an oriented matroid of dimensiond, i.e., of
rank r = d + 1. If r = 0 then 2d+1 = 1 = fd; assume for the followingr ≥ 1. Let
B be a basis ofE, so |B| = r . As B is an independent set, it does not contain loops.
Consider the deletion minorM′ := M \ (E \ B), an oriented matroid with ground set
B. By Corollary 0.4.6 (i), rank(M′) = rankM(B) = r . If X is a cocircuit inM′ then
rankM′(X) = 1 (see Corollary 0.7.11), and by definition rankM′(X0) = r − 1, but then
|X0| = r − 1. As for every elemente ∈ E which is not a loop there exists a cocircuit
X such thate ∈ X (cf. Lemma 0.6.2), the set of cocircuits ofM′ is the set of the 2r sign
vectorsX ∈ {−,+, 0}B such that|X0| = r − 1. LetT ′ denote the tope set ofM′, then
Corollary 0.6.4 implies thatT ′ = {−,+}B. It is obvious that for everyZ′ ∈ T ′ there
existsZ ∈ T such thatZ′ = ZB, therefore|T ′| = 2r = 2d+1 ≤ |T | = fd.

1.5.4 Corollary ([FST91]) For any oriented matroidM holds|F | ≤ |T |2, whereT is
the set of topes ofM.
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Proof Setd := dim(M) and apply Theorem 1.5.1 and Lemma 1.5.3 (note that by defini-
tion T 6= ∅):

|F | = 1 +
d∑

i=0

fi ≤ 1 +
d∑

i=0

(
d

i

)
fd = 1 + 2d|T | ≤ 2d+1|T | ≤ |T |2.

1.5.5 Lemma Let (E,F ) be an oriented matroid and X∈ F . Then the parallel classes
of F /X0 andF (X) := {Z ∈ F | Z = X} are the same.

Proof F /X0 is a set of covectors whose set of topes isF (X).

The key lemma is the following characterizations of lower faces, which is also used in
[FST91]. We add a proof which is basically a consequence of Lemma 0.7.6.

1.5.6 Lemma Let (E,F ) be an oriented matroid of dimension d:= dim(M). For any
i ∈ {0, . . . , d − 1}, Z ∈ Fi if and only if there exist X,Y ∈ Fi+1 such that X= Y and
D := D(X,Y) is a parallel class ofF (X) := {Z ∈ F | Z = X} and Z\ D = X \ D and
ZD = 0.

Proof Let (E,F ) be an oriented matroid,d := dim(M), andi ∈ {0, . . . , d − 1}. Let for
X ∈ F beF (X) := {Z ∈ F | Z = X}.
Assume that there existX,Y ∈ Fi+1 such thatX = Y and D := D(X,Y) 6= ∅ is a
parallel class ofF (X). Apply conformal elimination toX, Y, andD: There existse ∈ D
andZ ∈ F such thatZe = 0, ZD � XD, andZ \ D = (X ◦Y)\ D = X \ D. ThenZ ≺ X
and0 = ZD sinceD is a parallel class ofF /X0 (because of Lemma 1.5.5,Z ∈ F /X0,
and Lemma 0.7.5). AsD = Z0 \ X0, Lemma 0.7.6 impliesZ ∈ Fi .
Let Z ∈ Fi . As i < d there existsX ∈ Fi+1 such thatZ ≺ X. SetY := Z ◦ (−X), then
X = Y andY ∈ Fi+1, and forD := D(X,Y) follows Z \ D = X \ D andZD = 0. By
Lemma 0.7.6,D is a parallel class ofF /X0, hence by Lemma 1.5.5 also a parallel class
of F (X).

The above lemma immediately leads to an algorithm LOWERFACES (see Pseudo-
Code 1.2) which returns for everyi ∈ {0, . . . , d − 1} and inputW := Fi+1 the set of
lower facesFi . This algorithm is the key subroutine for the face enumeration algorithm
FACEENUMERATION (see Pseudo-Code 1.3) which returns for inputT = Fd the list
(F−1, . . . ,Fd) ordered by dimension. Our presentation follows essentially [FST91], with
one difference which makes the complexity analysis easier: we change the innerfor -loop
of the algorithm such that everyX ∈ W j and every parallel classD of W j is considered,
where in the original algorithm pairsX,Y ∈ W j are considered which are then tested for
D(X,Y) being a parallel class ofW j . The computation of parallel classes of a set of sign
vectors of same support is easy when omitting loops and reorienting such that(+ . . . +)
is one of the sign vectors being considered.

1.5.7 Theorem ([FST91])Let (E,F ) be an oriented matroid with tope setT . The al-
gorithm FACEENUMERATION started with inputW0 := T returns(F−1, . . . ,Fd), i.e.,
the algorithm enumerates all faces inF ordered by dimension. There exist implementa-
tions such that the algorithm has a complexity (measured by the number of elementary
operations) of at most O(n3 f 2

d ), where n is the cardinality of the ground set E.
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Input: A set of sign vectorsW ⊆ {−,+, 0}E.
Output:A set of sign vectorsW ′ ⊆ {−,+, 0}E.

begin LOWERFACES(W);
partitionW into classesW j of sign vectors having the same support;
W ′ := ∅;
for everyW j do

compute the collection of parallel classes ofW j ;
for everyX ∈ W j and every parallel classD of W j do

if XD 6= 0 and D X ∈ W j then
W ′ := W ′ ∪ {Z | Z \ D = X \ D andZD = 0}

endif
endfor

endfor;
return W ′

end LOWERFACES.

Pseudo-Code 1.2: Algorithm LOWERFACES

Input: A set of sign vectorsW0 ⊆ {−,+, 0}E.
Output:An ordered list(W− j , . . . ,W0) of sets of sign vectorsWi ⊆ {−,+, 0}E

for somej .

begin FACEENUMERATION(W0);
i := 0;
while W−i 6= {0} andW−i 6= ∅ do

W−i−1 := LOWERFACES(W−i );
i := i + 1

endwhile;
return (W−i , . . . ,W0)

end FACEENUMERATION.

Pseudo-Code 1.3: Algorithm FACEENUMERATION
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Proof We do not give a detailed analysis (for this see [FST91]). The algorithm LOW-
ERFACES has a complexity of at mostO(n3 fi+1) to enumerateFi from Fi+1 if the sign
vectors are sorted appropriately. This leads to an overall complexity for FACEENUMER-
ATION of O(n3|F |) which is at most(n3 f 2

d ) because of Corollary 1.5.4 (note that if the
algorithm is extended such that it stops with failure message if the number of sign vectors
collected exceedsf 2

d then the polynomial complexity is also valid for inputT which is
not the tope set of an oriented matroid).

1.6 Construction of Covectors and Topes from Cocircuits

In the previous section we have described a polynomial algorithm for the construction
of covectors (and hence also cocircuits) from topes. In this section we discuss how to
construct sets of covectorsF or topesT from a given set of cocircuitsD in polyno-
mial time, measured in input and output as|F | and |T | are usually not polynomial in
|D |. By this we use an extended notion of polynomiality which has been introduced by
Fukuda [Fuk96, Fuk00a, Fuk01]. Our construction methods of this section complete the
presentation in [FST91] where such algorithms have not been presented but have been
implicitly assumed to exist. We suppose that such algorithms may have been developed
by the authors of [FST91] without stating it.

We present two algorithms, COVECTORSFROMCOCIRCUITS (see Pseudo-Code 1.4) and
TOPESFROMCOCIRCUITS (see Pseudo-Code 1.5) which are similar, both are based on
the fact that every covector has a representation by conformal decompositon (see Propo-
sition 0.6.3). We use in the algorithms the data structure ofbalanced binary trees(also
calledAVL-trees[AVL62, Knu73]) which allow to store data such that the operations of
insertion, finding, and deletion all cost a number of operations which is logarithmic in the
number of entries currently stored in the tree.

1.6.1 Proposition The algorithmCOVECTORSFROMCOCIRCUITS constructs the set of
covectorsF from the set of cocircuitsD in time O(n2 f0|F |), where f0 = |D | and n is
the cardinality of the ground set E of the oriented matroid.

Proof The correctness of algorithm COVECTORSFROMCOCIRCUITS is quite obvious.
Note that all covectors are added to the setFnew exactly once. The compexity analysis
uses the trivial fact that|F | ≤ 3n, so log3 |F | ≤ n. Thewhile-loop is executed for every
Y in F once, where every execution costs at mostO(n2 f0) as we use a balanced binary
tree (i.e., the find and insert operations are bothO(n log |F |), soO(n2)). This leads to an
overall complexity ofO(n2 f0|F |).

For the algorithm TOPESFROMCOCIRCUITSwe modify COVECTORSFROMCOCIRCUITS

such that only topes are returned. This is easy sinceX ∈ F is a tope if and only ifX0 is
the set of loops (see Lemma 0.7.2).

1.6.2 Proposition The algorithmTOPESFROMCOCIRCUITS constructs the set of topes
T from the set of cocircuitsD in time O(n2 f0 f 2

d ), where f0 = |D |, fd = |T |, and
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Input: The ground setE and the setD ⊆ {−,+, 0}E of cocircuits of some
oriented matroid.
Output: The setF ⊆ {−,+, 0}E of covectors of the oriented matroid defined
by D .

begin COVECTORSFROMCOCIRCUITS(E, D);
F := {0}; (F is a balanced binary tree)
Fnew := {0};
while Fnew 6= ∅ do

take anyY from Fnew and remove it fromFnew;
for all X ∈ D do

Z := X ◦ Y;
if Z 6∈ F then insertZ in F and addZ to Fnew endif

endfor
endwhile;
return F

end COVECTORSFROMCOCIRCUITS.

Pseudo-Code 1.4: Algorithm COVECTORSFROMCOCIRCUITS

n is the cardinality of the ground set E of the oriented matroid. Because of f0 ≤ fd
(Corollary 1.5.2) the complexity is not higher than O(n2 f 3

d ).

Proof The proof is similar to the one concerning algorithm COVECTORSFROMCOCIR-
CUITS. The complexity is againO(n2 f0|F |), which is because of Corollary 1.5.4 at most
O(n2 f0 f 2

d ).

1.7 Algorithmic Characterization of Tope Sets

We consider in this section the characterization problem of tope sets and tope graphs of
oriented matroids. We present polynomial algorithms which solve these characterization
problems.

1.7.1 Proposition ([FST91]) There exists an algorithm which decides whether a given
setT ⊆ {−,+, 0}E is the set of topes of an oriented matroid or not. The complexity is
bounded by O(n3 f 2

d + n2 f 3
d ), where n= |E| and fd = |T |.

Proof Consider a setT ⊆ {−,+, 0}E of sign vectors. Setn := |E|. With the face
enumeration algorithm FACEENUMERATION from Section 1.5 we can construct in time
O(n3 f 2

d ) a list (W− j , . . . ,W0) such thatW− j +1 is the set of cocircuits corresponding to
T if T is the set of topes of an oriented matroid (cf. Theorem 1.5.7). If the algorithm
exceeds the limit off 2

d sign vectors thenT is not the tope set of an oriented matroid: the
algorithms stops and reports this. SetD := W− j +1; if |D | > fd then we stop (T is not
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Input: The ground setE and the setD ⊆ {−,+, 0}E of cocircuits of some
oriented matroid.
Output:The setT ⊆ {−,+, 0}E of topes of the oriented matroid defined byD .

begin TOPESFROMCOCIRCUITS(E, D);
if D = ∅ then return {0} = {0}E

else
F := {0}; (F is a balanced binary tree)
Fnew := {0};
T := ∅;
E0 := ⋂

X∈D
X0;

while Fnew 6= ∅ do
take anyY from Fnew and remove it fromFnew;
for all X ∈ D do

Z := X ◦ Y;
if Z 6∈ F then

insertZ in F ;
if Z0 = E0 then addZ to T elseaddZ to Fnew endif

endif
endfor

endwhile;
return T

endif
end TOPESFROMCOCIRCUITS.

Pseudo-Code 1.5: Algorithm TOPESFROMCOCIRCUITS

tope set of an oriented matroid, see Corollary 1.5.2). Otherwise test forD the cocircuit
axioms in timeO(n2|D |3), which is at mostO(n2 f 3

d ). If the cocircuit axioms are valid
for D , it remains to test whetherT is the tope set generated fromD under composition,
which can be done in timeO(n2 f 3

d ) using the algorithm TOPESFROMCOCIRCUITS (see
Pseudo-Code 1.5 and Proposition 1.6.2).

By combination of the result from Proposition 1.7.1 and the algorithm for the orientation
reconstruction from Section 1.4, there exists a polynomial algorithm which characterizes
tope graphs of oriented matroids. In practice, before this polynomial algorithm is used,
the known properties of tope graphs (especially also the new separability property of
Corollary 1.3.2) are checked, which reduces the amount of computation considerably.

1.7.2 Corollary ([FST91]) Tope graphs of oriented matroids can be characterized in
polynomial time: there exists an algorithm which decides for any (connected) graph G in
time bounded by O(n3 f 2

d + n2 f 3
d ) whether G is the tope graph of an oriented matroid or

not, where here n= diam(G) and fd = |V(G)|.
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Proof Consider a graphG, setn := diam(G) and fd := |V(G)| (if G is not connected it
is not the tope graph of an oriented matroid). Using algorithm ACYCLOIDORIENTATION-
RECONSTRUCTION(see Pseudo-Code 1.1) a setT of sign vectors can be constructed in
time of at mostO(n · |V(G)|3) such thatT is a set of topes ifG is the tope graph of
an oriented matroid (cf. Proposition 1.4.1 and note that|E(G)| ≤ |V(G)|2; if A CY-
CLOIDORIENTATIONRECONSTRUCTION fails, e.g., if no antipodal vertex is found,G
was not tope graph of an oriented matroid). By Proposition 1.7.1,T can be tested in time
O(n3 f 2

d +n2 f 3
d ) for being a set of topes of an oriented matroid, and finally it is obviously

possible without increase of the order of complexity to test whetherG is the tope graph
of T .
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Chapter 2

Cocircuits and Cocircuit Graphs

2.1 Introduction and Problem Statements

We discuss in this chapter reconstruction and characterization problems concerning the
cocircuit graph of an oriented matroid. The starting point of our work has been an article
of Cordovil, Fukuda, and Guedes de Oliveira [CFGdO00] which we obtained as a preprint
in 1998, and our goal was to extend their work, mainly by adding algorithmic solutions
with complexity analyses to their results. We describe our results in this chapter (see also
[BFF01]).

In this section we introduce basic definitions such as cocircuit graphs and graph labels and
formulate the problems considered in this chapter. We relate our work to the mentioned
work of [CFGdO00] and other related work.

We have introduced graphs in Section 1.1 as pairsG = (V(G), E(G)) of a vertex set
V(G) and an edge setE(G), where every edge is represented as an unordered pair of
vertices. Again, where appropriate we will identify any two graphs that are isomorphic.
The cocircuit graph of an oriented matroidM = (E,D) is the 1-skeleton ofM, which
is a graph because of the diamond property of oriented matroids (Theorem 0.7.13): For
every covectorX ∈ F with rankM(X) = 2, there exist exactly two cocircuitsV,W ∈ D
such that0 ≺ V ≺ X and0 ≺ W ≺ X. V andW correspond to verticesv,w ∈ V(G) and
X = V ◦ W to the edge{v,w} ∈ E(G). The number of vertices ofG equals the number
of cocircuits ofM, and the number of edges ofG equals the number of 1-dimensional
faces ofM: |V(G)| = |D | = f0 and|E(G)| = f1. More formally, we define:

2.1.1 Definition (Cocircuit Graph) Let M = (E,F ) be an oriented matroid andD the
set of cocircuits ofM. Thecocircuit graph ofM is a graphG with f0 = |D | vertices such
that there exists a bijectionL : V(G) → D for which {v,w} is an edge inE(G) if and
only if, for V := L(v) andW := L(w), V ◦W = W◦V (or, equivalently,D(V,W) = ∅)
andV andW are the only cocircuits conforming toV ◦W. We will call a grapha cocircuit
graphif it is the cocircuit graph of some oriented matroid.
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We will call a bijectionL : V(G) → D like in Definition 2.1.1 anassociating bijection.

Considering a finite pseudosphere arrangementS = {Se | e ∈ E} in the Euclidean space
Rd+1 as introduced in Section 0.1 and the corresponding oriented matroidM, the cocircuit
graph ofM is the 1-skeleton of the cell complexK on Sd induced byS. An illustration
of an oriented matroid by a pseudosphere arrangement and the corresponding cocircuit
graph is shown in Figure 2.1.
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Figure 2.1: Pseudosphere arrangement and cocircuit graph

Compared to the set of covectorsF , the cocircuit graph is a compact and simple structure
(e.g., the numberf0 of cocircuits is not larger than the numberfi of faces of any other
fixed dimensioni > 0, see Theorem 1.5.1). It is a natural to ask, to what extend an ori-
ented matroid is determined by its cocircuit graph, e.g., whether the cocircuit graph of an
oriented matroidM determines the isomorphism class IC(M) of M, i.e., (equivalently,
see Corollary 1.4.3) the face lattice ofM. The general answer to the latter question is
negative as Cordovil, Fukuda, and Guedes de Oliveira [CFGdO00] presented two non-
isomorphic oriented matroids of rank 4 which have isomorphic cocircuit graphs; for rank
at most 3 they gave an affirmative answer. However, the question remained open for co-
circuit graphs of uniform oriented matroids (which we will simply calluniform cocircuit
graphs), and positive answers are possible when some information about the oriented ma-
troid is added to the cocircuit graph, as we discuss in the following using the notion of
labels.

A label of a graph G(or, short,a graph label) is a mapL defined on the vertex setV(G),
and we callL(v) the label ofv ∈ V(G) (and, short,a vertex label). We will consider the
following three types of labels of cocircuit graphs:

2.1.2 Definition (OM-Label) For a graphG and an oriented matroidM we call a label
L of G the OM-label (oriented matroid label) of G w.r.t.M if G is the cocircuit graph of
M and every vertexv is labeled by the cocircuit associated tov; we call a labelL of a
graphG an OM-label of Gif L is the OM-label ofG w.r.t. some oriented matroid.
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Obviously is an oriented matroid explicitly given by its OM-labeled cocircuit graph. If
we omit orientations, we obtain a labeling by the underlying matroid:

2.1.3 Definition (M-Label) For an OM-labelL of a graphG we call a labelL of G the
M-label (matroid label) of G induced byL if every vertexv is labeled by the zero support
L(v)0; we call a labelL of a graphG an M-label of Gif L is the M-label ofG induced
by some OM-label ofG.

The labels of two vertices given by an M-label are the same if and only if they correspond
to negative cocircuits; we call such verticesantipodesor an antipodal pair, and define:

2.1.4 Definition (AP-Label) For an M-labelL of a graphG we call a labelA of G the
AP-label (antipode label) of G induced by Lif every vertexv is mapped to theantipode
A(v) = v of v which is the unique vertexv ∈ V(G) \ {v} such thatL(v) = L(v); for a
graphG we call a label ofG an AP-label of Gif it is the AP-label ofG induced by some
M-label of G.

We will consider the following reconstruction problems:

OM-Labeling Problem: Given a cocircuit graph G with M-label L,
find an OM-labelL of G such that L is the M-label of G induced byL.

M-Labeling Problem: Given a cocircuit graph G with AP-label A,
find an M-label L of G such that A is the AP-label of G induced by L.

AP-Labeling Problem: Given a cocircuit graph G (without label),
find an AP-label of G.

We survey in the following the known results concerning these labeling problems, includ-
ing the results presented in this chapter; see also Figure 2.2 for a corresponding illustration
(an arc marked byX indicates that the reconstruction is not possible in general, as the ex-
ample in [CFGdO00] shows).

G + OM-label ⇒ G + M-label ⇒ G + AP-label ⇒ G

X
X

up to reorient. up to isomorph. up to Aut(G)

for uniformoriented matroids

Figure 2.2: Diagram of reconstruction problems and results

The OM-labeling problemhas always a solution which is unique up to reorientation, which
was proved in [CFGdO00]. We will give a slightly simpler proof in Section 2.2 and
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present a simple algorithm for the construction of the OM-label with a running time of
O(( f0 + f1)n), wheren = |E| is the cardinality of the ground set. For our complexity
analyses we assume that every elementary operation (such as an addition or comparison
of single elements) can be computed in constant time.

The M-labeling problemhas in general no solution which is unique up to isomorphism,
as can be seen from the mentioned example in [CFGdO00]. However, if the rank of the
oriented matroid is at most 3 or if the oriented matroid is uniform, the M-label is deter-
mined (up to isomorphism) by the AP-labeled cocircuit graph, which was also proved in
[CFGdO00]. We discuss the uniform case in Section 2.3 and present an algorithm which
solves the problem inO( f0 · f1) elementary steps; similar to the proofs in [CFGdO00],
we consider in the construction the so-calledcoline cyclesof the cocircuit graph and a
distance notion defined on the coline cycles.

The AP-labeling problemwill turn out to be the most difficult of all three problems. We
show in Section 2.4 that in the uniform case AP-labels can be reconstructed in polynomial
time from the given graph up to graph automorphisms. This implies that the isomorphism
class of a uniform oriented matroidM is determined by its cocircuit graph. It is still open
whether there is a unique AP-label, and also the non-uniform case remains open (except
for rank at most 3, which was also discussed in [CFGdO00]).

Strongly related to the reconstruction problems is the question whether and how cocircuit
graphs (with or without labels) can be characterized:

Characterization Problem: Decide whether a given graph (without or with label) is a
cocircuit graph.

We discuss in Section 2.5 how the correctness of the input of our algorithms can be
checked in polynomial time. This solves the characterization problem for cocircuit graphs
of uniform oriented matroids and for M-labeled cocircuit graphs algorithmically (i.e., we
do not give a direct graph theoretical characterization). When rank(M) = 3, the cocircuit
graphG of M is planar and has a unique dual, which is the tope graph ofM (cf. Chap-
ter 1); the polynomial characterization of tope graphs for rank(M) = 3 [FH93] leads to a
polynomial characterization for rank 3 cocircuit graphs.

2.2 Orientation Reconstruction from Matroid Label

We consider the OM-labeling problem for a given M-labeled cocircuit graphG of some
oriented matroidM. Remark that for oriented matroids of rank 0 or 1 the problem is
trivial (cf. Lemma 0.7.14): In rank 0 there is no cocircuit at all, and the cocircuit graph is
the empty graph; in rank 1 there are exactly two cocircuitsZ and−Z, the cocircuit graph
consists of two points and no edge. Let us assume in the following that rank(M) ≥ 2.
Then the ground setE of M is determined by the given M-labelL as the union of all
vertex labelsL(v).
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Before we start with the general case, we consider the case of rank 2 which can be char-
acterized easily (see also Figure 2.3):

2.2.1 Lemma A graph G is the M-labeled cocircuit graph of an oriented matroid of rank
2 if and only if

• G is a cycle of even length and

• two distinct verticesv,w ∈ V(G) have the same vertex label if and only ifv andw
have maximal distance in G and

• the intersection of any two different vertex labels is always the same (namely the set
of loops).

Proof It is not difficult to see that compared to tope graphs the roles of cocircuits and
edges interchange, i.e., the vertices in a rank 2 tope graph become the edges in the corre-
sponding cocircuit graph and vice versa. As rank 2 tope graphs are cycles of even length,
so are cocircuit graphs of rank 2 oriented matroids. The characterization of oriented ma-
troids of rank 2 in Corollary 1.4.4 implies the remaining claims.
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Figure 2.3: Cocircuit graph of an oriented matroid of rank 2

Let G be the cocircuit graph of an oriented matroidM, with associating bijectionL :
V(G) → D . As explained above, an edge{v,w} ∈ E(G) corresponds to a 1-faceZ of
M which is determined byZ = L(v) ◦ L(w). The zero support a 1-face is called coline.
For example, the coline which corresponds to{v,w} is Z0 = L(v)0 ∩ L(w)0.

2.2.2 Definition (Coline of an Edge)Let G be a cocircuit graph of an oriented matroid
of rank at least 2 withM-labelL. For an edge{v,w} ∈ E(G) we callU := L(v)∩ L(w)
the coline of{v,w} and say that{v,w} corresponds to U.

2.2.3 Lemma Let G be the M-labeled cocircuit graph of an oriented matroid of rank at
least 2. The edges in G which correspond to the same coline form a cycle in G.
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Proof Let M be an oriented matroid of rank at least 2,G the cocircuit graph ofM, andL
the M-label ofG w.r.t.M. Consider any colineU and the contraction minorM/U to that
coline, which is an oriented matroid of rank 2 (cf. Corollary 0.4.6 (ii)). It is not difficult to
see that the subgraph inG induced by the verticesv with U ⊆ L(v) is the cocircuit graph
of M/U (i.e., a cycle of even length, see Lemma 2.2.1) and the edges of this induced
subgraph are the edges inG whose coline isU .

2.2.4 Definition (Coline Cycle) Let G be theM-labeled cocircuit graph of an oriented
matroid of rank at least 2, and letU be a coline. The cyclec(U) formed by the edges
corresponding to colineU is calledthe coline cycle of U.

Compared to the work of [CFGdO00] we present a slightly simplified proof for the claim
that the reorientation class OC(M) is determined byG and L, and the proof is directly
used for a simple polynomial algorithm OMLABELFROMML ABEL that solves the OM-
labeling problem. The key argument is given by the following proposition:

2.2.5 Proposition Let L be an OM-label of G and L the M-label of G induced byL,
and for any non-loop e∈ E let G(e) be the subgraph of G induced by the verticesv with
e 6∈ L(v). Then there are exactly two connected components of G(e), and any two vertices
v andw belong to the same connected component if and only ifL(v)e = L(w)e 6= 0.

A proof of Proposition 2.2.5 was given in [CFGdO00], in the proof of Theorem 2.3. Our
proof is based on the same ideas. The following property of hyperplanes in a matroid (see
Section 0.3) is needed:

2.2.6 Lemma Let (E,A) be a matroid of rank r≥ 2 with ground set E and setA of flats
and setH of hyperplanes. For any two different hyperplanes H, H̃ ∈ H such that H∩ H̃
is not a coline and any e∈ E \ (H ∪ H̃) there exists a hyperplane H′ ∈ H such that

(i) e 6∈ H ′,

(ii) H ∩ H ′ is a coline, and

(iii) H ∩ H̃ $ H ′ ∩ H̃ .

Proof Let U be a coline such thatH ∩ H̃ $ U $ H , and letŨ be the intersection of all
hyperplanes containingU and somef ∈ H̃ \ U . If U $ Ũ , thenŨ is a hyperplane and
every hyperplane containingU and somef ∈ H̃ \ U is equal toŨ , by thisU ⊆ Ũ = H̃
andU ⊆ H ∩ H̃ , a contradiction. We concludeU = Ũ , and sincee 6∈ U there exists a
hyperplaneH ′ containingU and somef ∈ H̃ \U such thate 6∈ H ′. The claim follows for
H ′, observing thatf ∈ H ′ \ H (remark f 6∈ U ⊇ H ∩ H̃ , so f 6∈ H ) andH ∩ H ′ = U .

Proof of Proposition 2.2.5 Let v andw be vertices inG(e). If L(v)e = −L(w)e, then
the definition of a cocircuit graph implies that on any path inG from v to w there is
a vertexu with L(u)e = 0, i.e., v andw are not connected inG(e). Let us assume
L(v)e = L(w)e 6= 0. The claim follows when we show thatv andw are connected
in G(e). If L(v) = L(w) then by cocircuit axiom (C2)v = w, otherwise we apply
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(possibly repeatedly) Lemma 2.2.6: There exists a finite sequence of hyperplanesL(v) =:
H0, H1, . . . , Hk := L(w) such thate 6∈ Hi for all i ∈ {0, . . . k} andUi := Hi−1 ∩ Hi is a
coline for all i ∈ {1, . . . k}. By cocircuit axiom (C2), there exists for everyi ∈ {0, . . . , k}
a unique vertexvi such thatL(vi ) = Hi andL(vi )e = L(v)e. We show that for all
i ∈ {1, . . . , k} the verticesvi−1 andvi are connected inG(e): Bothvi−1 andvi are on the
coline cyclec(Ui ) of Ui in G, and sinceL(vi−1)e = L(vi )e there is a (unique) path on
c(Ui ) from vi−1 to vi in G(e).

The property of an M-labeled cocircuit graphG which is stated in Proposition 2.2.5 leads
directly to a simple algorithm which solves the OM-labeling problem for rank at least
2: For every elemente ∈ E determine the two connected components of the subgraph
G(e) of G induced by the verticesv with e 6∈ L(v), and assign a+ sign to all vertices
in one component, a− sign to the vertices in the other component, 0 to the remaining
vertices. A more formal description of this algorithm OMLABELFROMML ABEL is given
by Pseudo-Code 2.1.

Input: A cocircuit graphG with M-label L.
Output:An OM-labelL of G such thatL is the M-label ofG induced byL.

begin OMLABELFROMML ABEL(G,L);
E := ⋃

v∈V(G)
L(v);

for all e ∈ E do
G(e) := the subgraph ofG induced by{v ∈ V(G) | e 6∈ L(v)};
if G(e) is emptythen

for all v ∈ V(G) do L(v)e := 0 endfor
else

letw be any vertex inG(e);
for all v ∈ V(G) do

L(v)e :=



0 if e ∈ L(v),
+ if e 6∈ L(v) andv is connected tow in G(e),
− otherwise.

endfor
endif

endfor;
return L

end OMLABELFROMML ABEL.

Pseudo-Code 2.1: Algorithm OMLABELFROMML ABEL

2.2.7 Theorem Given as input a cocircuit graph G with M-label L, then the algorithm
OMLABELFROMML ABEL terminates with correct output after at most O(( f0 + f1)n)
elementary arithmetic operations, where f0 = |V(G)|, f1 = |E(G)|, n = |E|. The
orientation is unique up to reorientation.
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Proof The correctness of the algorithm OMLABELFROMML ABEL and the uniqueness
of the OM-label up to reorientation follow from Proposition 2.2.5. For the complexity
observe that for every of then elements inE the induced subgraphG(e) and its connected
components can be computed inO( f0 + f1) (e.g., by a breadth-first-search technique).

2.2.8 Corollary ([CFGdO00]) The reorientation class of an oriented matroid is deter-
mined by its M-labeled cocircuit graph.

2.3 Reconstruction of Uniform Matroid Labels from An-
tipodes

We discuss in this section the M-labeling problem where the given graphG is the cocircuit
graph of some uniform oriented matroid and where an AP-labelA of G is given. Without
loss of generality our concern we will be to find an M-label ofG which is induced by a
uniform oriented matroid. Note that for oriented matroids of rank 0 or 1 the M-labeling
problem is trivial, and we can assume for the following that rank(M) ≥ 2. We present
a polynomial algorithm MLABELFROMAPLABEL which computes an M-labelL of G
such thatA is the AP-label ofG induced byL. By this we extend the result of [CFGdO00]
which states that such an M-label is unique up to isomorphism on the ground set, which is
the union of the vertex labels. Note that for the algorithm MLABELFROMAPLABEL no
information likeM, E, or rank(M) is given; we will only useG, the given AP-labeling
A : v 7→ v, and the information thatM is uniform. This uniformity implies many
structural properties:

2.3.1 Lemma Let M = (E,F ) be a uniform oriented matroid with n:= |E| and
r := rank(M) ≥ 2. Then:

(i) Every subset of r− 1 elements is a hyperplane, and every subset of r− 2 elements
is a coline.

(ii) All coline cycles have length2 · (n − r + 2).

(iii) The coline cycles of any two different colines U1 and U2 have a common vertex if
and only if|U1 \ U2| = 1.

Proof The claims follow quite directly from the uniformity ofM. Observe that a vertex
v is on the cycle of a colineU if and only if the hyperplane associated tov has the form
U ∪ {e} for somee ∈ E \ U .

2.3.2 Definition (Distance of Coline Cycles)Let M = (E,F ) be a uniform oriented
matroid,G its cocircuit graph with OM-labelL, L the M-label ofG induced byL, and
v0 ∈ V(G) an arbitrary vertex. For a colineU ⊆ E we call|U \ L(v0)| the distance of U
to v0 and alsothe distance of the coline cycle of U tov0.

The distance of a coline cycle is also defined by the cocircuit graph and the coline cycles
(i.e., without hyperplanes and colines):
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2.3.3 Corollary ([CFGdO00]) The coline cycles of distance 0 tov0 are the coline cycles
throughv0, the coline cycles of distance 1 are those which intersect a coline cycle of
distance 0 but do not meetv0; inductively the coline cycles of distance k+ 1 are exactly
those that intersect at least one coline cycle of distance k but which are not of distance k.

The following lemma states an important property of coline cycles:

2.3.4 Lemma ([CFGdO00]) LetM = (E,F ) be a uniform oriented matroid, n:= |E|,
and r := rank(M) ≥ 2. Let p be a pathv = v0, v1, v2, . . . , vt−1, vt = v in the cocircuit
graph G ofM connecting an antipodal pair(v, v). Then p is a shortest path in G fromv
to v if and only if t = n − r + 2, and then there exists a coline U⊆ E such that{vi−1, vi }
is an edge on the coline cycle of U for all i∈ {1, . . . , t}.
Proof Let L be the M-label induced by the OM-label ofG w.r.t. M. Obviously there are
2· (r −1) different paths fromv to v of lengthn−r +2 that are defined by ther −1 coline
cycles throughv andv. On the other hand, letp be a path fromv to v, and letJ ⊆ E be
the set of elements that belong to some but not all labels of the verticesvi on p. Since by
uniformity |L(vi−1) \ L(vi )| = 1 for each edge{vi−1, vi } on p, L(v) = L(v) implies that
the cardinality|J| is a lower bound for the length ofp. CertainlyE \ L(v) ⊆ J, and if p
does not follow only one coline, then|L(v) ∩ J| ≥ 2, i.e., then the length ofp is at least
|E \ L(v)| + 2 = n − r + 3.

The algorithmic idea is first to detect the coline cycles of the cocircuit graph with an algo-
rithm LISTCOLINECYCLES with input and output as specified in Pseudo-Code 2.2, and
then to use these coline cycles to construct an M-label with an algorithm MLABELFROM-
COLINECYCLES (see Pseudo-Code 2.3); the two steps could be done in parallel, but for
clarity and since there is no loss w.r.t. complexity we present the algorithm MLABEL-
FROMAPLABEL divided into this two parts (cf. Pseudo-Code 2.4).

Input: A cocircuit graphG with AP-label A, andv0 ∈ V(G).
Output: A list S of all coline cycles ofG such that every coline cyclec ∈ S
is given as a list of the vertices onc in an order as they are adjacent onc, and
such thatS is ordered with increasing coline distance to vertexv0, and among the
coline cycles of distance 1 those come first which intersect the first coline cycle
in S.

Pseudo-Code 2.2: Input and Output Specification of LISTCOLINECYCLES

Input: A list Sas specified as output of LISTCOLINECYCLES.
Output:An M-label L of the graphG given byS.

Pseudo-Code 2.3: Input and Output Specification of MLABELFROMCOLINECYCLES

It is not difficult to design an algorithm LISTCOLINECYCLES as specified in Pseudo-
Code 2.2 which runs in time of at mostO( f0 f1), where as beforef0 = |V(G)| and
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Input: A cocircuit graphG with AP-labelA.
Output:An M-label L of G such thatA is the AP-label ofG induced byL.

begin ML ABELFROMAPLABEL(G, A);
Choose any vertexv0 ∈ V(G);
S := LISTCOLINECYCLES(G, A, v0);
return ML ABELFROMCOLINECYCLES(S)

end ML ABELFROMAPLABEL.

Pseudo-Code 2.4: Algorithm MLABELFROMAPLABEL

f1 = |E(G)|: it is sufficient to visit all antipodal pairs with increasing coline distance
to v0, to determine for each pair(v, v) the 2(r − 1) shortest paths betweenv andv, and
to combine two such paths to a coline cycle when they contain antipodal vertices (cf.
Lemma 2.3.4).

The key ideas of algorithm MLABELFROMCOLINECYCLES are an initialization of the
labels as far as the freedom of isomorphism allows, and then the propagation of the labels
observing necessary conditions; finally the coline cycle connectivity will be used to prove
that the construction of the M-label has been complete. The necessary conditions for
propagation and the coline cycle connectivity are stated in the following lemma:

2.3.5 Lemma Consider the cocircuit graph G of a uniform oriented matroid, an M-label
L of G, and the coline cycles in G given by L.

(i) If v andw are vertices on a common coline cycle c and not antipodals, then the
intersection L(c) of all labels of vertices on c is equal to L(v) ∩ L(w).

(ii) If v is a vertex on two different coline cycles c1, c2, then L(v) = L(c1) ∪ L(c2).

(iii) On a coline cycle of distance k≥ 1 to v0 there are exactly2·(k+1) vertices that are
on at least one coline cycle of distance k− 1; every of these vertices is on exactly k
coline cycles of distance k− 1.

Proof All claims follow from the definition of an M-label and the uniformity ofM; see
also Lemma 2.3.1.

For an M-labelL, we call for a coline cyclec the setL(c) as introduced in Lemma 2.3.5
the label of c. We discuss now initialization and propagation of the labels in the construc-
tion of an M-label by algorithm MLABELFROMCOLINECYCLES. Consider a setS as
returned by algorithm LISTCOLINECYCLES.

Initialization. We can easily determiner := rank(M) andn := |E| from S, since every
vertex appears on exactlyr −1 coline cycles and every coline cycle has length 2·(n−r +2).
Using the freedom of isomorphism we initializeL(v0) := {1, . . . , r − 1}, and of course
L(v0) := L(v0), and the labels of the remaining 2· (n − r + 1) vertices on the first coline
cycle in S are set to{1, . . . , r − 2} ∪ { j } for j ∈ {r, . . .n}, where antipodal vertices take
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the same label. Hence the label of the first coline cycle inS is set to{1, . . . r − 2}; we
are still free to initialize the labels of the remaining coline cyclesci of distance 0 (i.e., the
coline cycles at a positioni ∈ {2 . . . , r − 1} in S) by L(ci ) := {1, . . . r − 1} \ {i − 1}
(i.e., we initialize the label of every vertexv on ci that is different fromv0 andv0 by
L(v) := L(ci )).

Propagation. In the order of listS, i.e., with increasing distance to vertexv0, and starting
with the first coline cycle of distance 1 (this coline cycle is at positionr in S) we do the
following for every coline cyclec:

1. We determine the labelL(c) as follows:

• If c is of distance 1 and intersects the first coline cycle inS, the only two
distinct labels already initialized onc have the form{1, . . . , r − 2} ∪ { j } for
j ∈ {r, . . .n} andL(ci ) = {1, . . . r − 1} \ {i − 1} for i ∈ {2 . . . , r − 1}; the
label must then beL(c) := {1, . . . , r − 2} \ {i − 1} ∪ { j }.

• If c is of distance 1 and does not intersect the first coline cycle inS, then there
are two distinct labels already initialized on the coline cyclec which have the
form {1, . . . , r − 1} \ {i1 − 1} ∪ { j } and{1, . . . , r − 1} \ {i2 − 1} ∪ { j } for
i1, i2 ∈ {2, . . . r − 1} with i1 6= i2 and j ∈ {r, . . .n}; the label must then be
their intersection, i.e.,L(c) := {1, . . . , r − 1} \ {i1 − 1} \ {i2 − 1} ∪ { j }.

• If c is of distancek ≥ 2, then we choose any two among thek + 1 labels
already initialized onc; these labels are already determined byk ≥ 2 vertices
of distancek − 1, henceL(c) is equal to the intersection of these two labels.

2. We addL(c) to L(v) for every vertexv on the coline cycle:L(v) := L(v) ∪ L(c);
for the first time we setL(v) := L(c), and after the next change willL(v) be
a (r − 1)-subset ofE, i.e., L(v) is then a complete vertex label and will not be
changed further.

Initialization and propagation describe the algorithm MLABELFROMCOLINECYCLES,
hence also the algorithm MLABELFROMAPLABEL is now complete (see Pseudo-
Code 2.4).

2.3.6 Theorem If G is the cocircuit graph of a uniform oriented matroidM with
rank(M) ≥ 2 and A an AP-label of G, then the algorithmML ABELFROMAPLABEL

terminates with correct output in time O( f0 f1), where f0 = |V(G)| and f1 = |E(G)|.
The M-label L constructed byML ABELFROMAPLABEL is unique up to isomorphism on
the ground set.

Proof Let M = (E,D) be a uniform oriented matroid,n := |E|, r := rank(M) ≥ 2;
in addition we setu := ( n

r −2

)
for the number of colines and denote byG the cocircuit

graph ofM. We have already seen that with inputG and A the algorithm determines
all labels correctly and—up to isomorphism—uniquely because of the properties stated
in Lemma 2.3.5 (note that in the special case rank(M) = 2, the labels are complete
after initialization of the first coline cycle). The complexity of LISTCOLINECYCLES was
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stated to beO( f0 f1), and we will show that the complexity of MLABELFROMCOLINE-
CYCLES is of orderO( f1) + O(r · u), which is also at mostO( f0 f1) becausen ≥ r
implies f0 = 2

( n
r −1

) ≥ 2
( r
r −1

) = 2r and f1 = 2u(n − r + 2) ≥ 4u, hencef0 f1 ≥ 8ru. In
ML ABELFROMCOLINECYCLES we visit every vertex in every coline cycle not more than
some constant number of times (from thereO( f1) operations). We modify the label of
every vertex at most twice, and since we can keep labels sorted we needO(r ) operations
for one modification, which leads to a total number ofO( f0r ) = O( f1) operations for all
label modifications. Finally we need for every of theu coline cyclesO(r ) computations
to find its label.

2.4 Antipodes in Uniform Cocircuit Graphs

In this section we discuss how to solve the M-labeling problem for a cocircuit graphG
of a uniformM without AP-label, by this strengthening the result of the previous section.
Again we will not consider M-labels that are not induced by a uniform oriented matroid.
We first discuss how to construct an M-label when the labels of only two antipodal pairs
on a common coline are given:

2.4.1 Theorem If G is the cocircuit graph of a uniform oriented matroidM and there
are two different antipodal pairs labeled in G which are known to be on a common coline
cycle, then one can construct an M-label L of G in time O( f0 f1), where f0 = |V(G)|
and f1 = |E(G)|, and the AP-label of G induced by L is uniquely determined by G and
the two given antipodal pairs.

Proof Let v, v andw,w be two different antipodal pairs inG that are on a common
coline cyclec. As for the label construction in the previous section,r := rank(M) and the
cardinalityn of the ground set ofM can be easily found from the degree 2· (r − 1) of a
vertex and the distancen − r + 2 of an antipodal pair. LetE be a set of cardinalityn. We
know that for any M-labelL of G with ground setE the vertex labelsL(v) = L(v) and
L(w) = L(w) are(r −1)-subsets ofE andL(c) = L(v)∩ L(w) is an(r −2)-subset ofE,
henceL(v) = L(c)∪{ev} andL(w) = L(c)∪{ew} for ev, ew ∈ E \ L(c), whereev 6= ew.
There are 2· (r − 1) shortest paths betweenv andv, each corresponding to one half of a
coline cycle (see Lemma 2.3.4), and the same holds forw andw; we have to detect which
paths belong to the same coline cycle. It is easy to find the shortest paths belonging to the
coline cyclec which contains the given antipodal pairs. Two shortest paths not belonging
to c, sayp1 betweenv andv and p2 betweenw andw, belong to coline cyclesc1 andc2

with labelsL(c1) = L(v)\{e1} andL(c2) = L(w)\{e2} for somee1, e2 ∈ L(c), and since
L(c1)\ L(c2) = {ev, e2}\{e1}, the pathsp1 andp2 have a common vertex (anintersection
vertex) if and only if e1 = e2 (cf. Lemma 2.3.1 (iii)); the label of the intersection vertex
is L(c) ∪ {ev, ew} \ {e1}. It is easy to see that there are exactly 2· (r − 2) intersection
vertices (namelyr − 2 antipodal pairs) with labelsL(c) ∪ {ev, ew} \ {ei } for ei ∈ L(c),
and hence any two intersection vertices are on a common coline cycle with a label of
the form L(c) ∪ {ev, ew} \ {ei , ej }. Therefore the distance of two intersection vertices
in G is less or equal ton − r + 2 with equality if and only if they are antipodals; by
this we can identify shortest paths belonging to the same coline cycle. Hence we can
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determine all coline cycles of distance 0 tov and with the same technique for the rest of
G, extending the labeling as in the algorithm MLABELFROMCOLINECYCLES. Also the
complexity discussion is similar to the discussion above, it is sufficient to count all costs
for computing shortest paths and identifying antipodal intersection vertices correctly (for
every of thef0 vertices there are total costs ofO( f1)).

Theorem 2.4.1 implies:

2.4.2 Corollary There is an algorithm which solves the M-labeling problem for a given
cocircuit graph G of a uniform oriented matroidM = (E,D) without AP-label in time
O( f 3

0 f1n2), where f0 = |V(G)|, f1 = |E(G)|, n = |E|.
Proof For a choice of two pairs of vertices(v, v) and (w,w) from G, we construct a
label L of G as in the proof of Theorem 2.4.1 (this might fail, then(v, v) and(w,w) are
not two antipodal pairs); ifL is an M-label ofG (we can check this in timeO( f 3

0 n2),
see Theorem 2.5.1), we stop, otherwise(v, v) and(w,w) are not two antipodal pairs and
we start over with other pairs. Obviously it is sufficient to check pairs where{v,w} and
{v,w} are edges inG and one edge is fix, i.e., there are at mostO( f1) pairs to check.

It remains to discuss whether the M-labels of a graphG that is the cocircuit graph of
a uniform oriented matroid are all isomorphic, i.e., whether for any two M-labelsL :
V(G) → 2E and L̃ : V(G) → 2Ẽ there exists a bijectionφ : E → Ẽ such thatL̃ = φL.
We will prove this up to graph automorphism in Theorem 2.4.4, using Theorem 2.4.1 and
the following Lemma 2.4.3:

2.4.3 Lemma Let G be the cocircuit graph of a uniform oriented matroidM = (E,D)

with rank(M) = 2 or rank(M) = 3, andv,w ∈ V(G). The distance fromv tow in G is
at most|E| − rank(M)+ 2 with equality if and only ifv andw are antipodals.

Proof Let L be an OM-label ofG w.r.t. M, and setV := L(v) andW := L(w). We
assume thatV andW are not on a common coline and therefore rank(M) = 3, otherwise
the claim is obviously correct. Without loss of generality we assume thatE = {1, . . . , n},
V0 = {1, 2}, 3 ∈ W0, andW1 = W2 = V3 = +. We consider fori ∈ I := {1, 2, 3}
the colines{i } and their coline cyclesci . For i ∈ I let Xi be the cocircuit defined by
Xi

i = + and Xi
j = 0 for j ∈ I \ {i }, then the vertexxi corresponding toXi is on the

intersection ofcj andck for { j , k} = I \ {i } (especiallyv = x3). Denote bypi the shorter
of the two paths onci betweenxj andxk, where{ j , k} = I \ {i }. Then the unionp of
the pathsp1, p2, p3 forms a cycle inG, and a vertexy ∈ V(G) is on p if and only if
L(y)I ∈ {0,+}I \ ({0}I ∪ {+}I ). As v andw are onp, it is sufficient to prove that the
length of p is less than 2(n − 1). We show that there are at most 2(n − 3) verticesy
on p different fromx1, x2, andx3: Such a vertexy is characterized byL(y)e = 0 for
somee ∈ E \ I andL(y)i = 0 for somei ∈ I , and thenL(y) j = +, L(y)k = + for
{ j , k} = I \{i }. Assume that for somee ∈ E\I there exist all three vertices, i.e., there exist
three cocircuits inD whose signs corresponding to 1, 2, 3, eare( 0 + + 0 ), (+ 0 + 0 ),
and(+ + 0 0 ); then the cocircuit axiom (C3) applied to the first and the negative of the
second implies a contradiction to axiom (C2) for the third cocircuit. Therefore there exist
for everye ∈ E \ I at most two verticesy on p with L(y)e = 0.



88 COCIRCUITS AND COCIRCUIT GRAPHS

The following theorem is based on a idea of Babson [BFF01]. We denote byρσ (ρ after
σ ) the concatenation of mapsρ, σ and byτ−1 the inverse of a bijectionτ .

2.4.4 Theorem Let G be the cocircuit graph of a uniform oriented matroidM and L and
L̃ M-labels of G. Then there exists a graph automorphism g∈ Aut(G) such that Lg and
L̃ are isomorphic, i.e.,πLg = L̃ for some permutationπ .

Proof Let L and L̃ be M-labels ofG, and denote the induced AP-labels byA and Ã,
respectively. Remark thatA−1 = A ∈ Aut(G) and Ã−1 = Ã ∈ Aut(G). Since for any
g ∈ Aut(G) the AP-label induced byLg is g−1Ag and because of Theorem 2.3.6, it is
sufficient to findg ∈ Aut(G) such thatg−1Ag = Ã. As Aut(G) is finite, the order of
ÃA ∈ Aut(G) is finite. If the order ofÃA is odd, say 2k + 1 for a nonnegative integerk,
theng := (ÃA)k is sufficient. We will show that the order of̃AA cannot be even.

We show that(ÃA)2 = 1 implies ÃA = 1 (hence the order of̃AA cannot be 2). LetE
denote the ground set ofL, and as usualn := |E| andr := rank(M). Assume(ÃA)2 = 1,
then the AP-labels induced byL Ã andL are equal, so, by Theorem 2.3.6,L Ã andL are
isomorphic, i.e., there exists a permutationπ of the elements inE such thatπL = L Ã.
AsππL = πL Ã = L ÃÃ = L impliesπ2 = 1, the orbits ofπ must all have order 1 or 2,
so we can choose a unionU ⊆ E of these orbits with|U | = r −2 or |U | = r −3. Consider
the subgraphGU of G induced by the vertex setV(GU ) := {v ∈ V(G) | U ⊆ L(v)}.
Remark thatV(GU ) is closed underA by definition and also closed underÃ because of
L Ã = πL andπ(U) = U . GU is the cocircuit graph of a uniform oriented matroid
contraction minor with rankr ′ := r − |U | ∈ {2, 3} andn′ := n − |U | elements in the
ground set, so Lemma 2.4.3 implies that for every vertexv ∈ V(GU ) there is a unique
vertexv ∈ V(GU ) such that the distance inGU fromv to v is at leastn′−r ′+2 = n−r +2.
On the other handn − r + 2 is the distance inG between a vertexv and A(v) (and also
betweenv and Ã(v)), and the distance in the subgraphGU cannot be smaller. Therefore
A(v) = Ã(v) = v for v ∈ V(GU ), so, by Theorem 2.4.1,A = Ã.

Assume that the order of̃AA is 2k for an integerk > 1. If k = 2k′ setL̂ := L(ÃA)k
′−1 Ã,

if k = 2k′ + 1 set L̂ := L̃(AÃ)k
′
. Let Â denote the AP-label induced by the M-label

L̂, then in either casêAA = (ÃA)k, hence(ÂA)2 = 1. Thus by the previous case
(ÃA)k = ÂA = 1, contradicting the assumption that the order ofÃA is 2k.

2.4.5 Corollary The isomorphism class of a uniform oriented matroid is determined by
its cocircuit graph.

Proof The proof follows from Corollary 2.2.8 and Theorem 2.4.4. LetM andM̃ be two
uniform oriented matroids which both have the same cocircuit graph, i.e., there exists a
graph isomorphismφ : G̃ → G between the cocircuit graph̃G of M̃ and the cocircuit
graphG of M. Let L and L̃ denote OM-labels ofG and G̃ w.r.t. M and M̃ and L
and L̃ the M-labels induced byL and L̃, respectively. By Theorem 2.4.4 there exists
g ∈ Aut(G) such thatLg and L̃φ are isomorphic. Then Corollary 2.2.8 implies thatLg
andL̃φ are isomorphic, which is equivalent to say thatM andM̃ are isomorphic.
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2.5 Characterization of Cocircuit Graphs

We discuss in this section the characterization problem for cocircuit graphs of uniform ori-
ented matroids and of any M-labeled cocircuit graphs. We have presented in the previous
sections polynomial algorithms for the corresponding M-labeling and the OM-labeling
problems. These algorithms did not check the correctness of the input. In this section
we add input checks to the above algorithms and use them for the design of polynomial
algorithms that solve the characterization problems of M-labeled cocircuit graphs and of
(unlabeled) uniform cocircuit graphs.

Note that the algorithms for the M-labeling of cocircuit graphs of uniform oriented ma-
troids and for the OM-labeling of M-labeled cocircuit graphs may run into problems if
their input is not correct. If such a problem is detected on run time, it will cause the al-
gorithm to abort (we say then, the algorithmfails), otherwise the algorithm will terminate
with some output. In neither case will the complexity of the algorithms be affected. If
an algorithm fails, we know that its input was not correct, otherwise the output of the
algorithm will be used to decide whether the input was correct or not.

We discuss first the algorithmic characterization of M-labeled cocircuit graphs.

2.5.1 Theorem Let G be a graph with label L: V(G) → 2E. There exists an algorithm
which decides whether G is a cocircuit graph with M-label L or not, and this algorithm
runs in time O( f 3

0 n2), where f0 = |V(G)| and n := |E|.
Proof First we use the algorithm OMLABELFROMML ABEL in order to obtain a label
L of G. Then we check the cocircuit axioms (C0) to (C3) for the set of all vertex labels
L(v); if not all axioms are valid, we know that the inputG andL was not correct, i.e.,
we can stop and report thatG is not a cocircuit graph with M-labelL. If (C0) to (C3)
are valid, we construct the cocircuit graphGL of the oriented matroid defined byL and
compareGL with the input graphG. If G andGL are the same (with vertices identified
as they associate to the same cocircuits), thenG is a cocircuit graph with M-labelL, oth-
erwise not. It remains to discuss the complexity of the above characterization algorithm;
as we do not use any sophisticated data structure, our complexity result may be improved
further. With f1 = |E(G)|, we have a complexity ofO(( f0 + f1)n) for OMLABEL-
FROMML ABEL in order to computeL; we check the cocircuit axioms which is trivially
possible inO( f 3

0 n2) elementary arithmetic steps. If all axioms are valid we construct the
cocircuit graphGL from D which can be done inO( f 3

0 n) elementary arithmetic steps
as follows: The vertex set ofGL is the same as forG. For every vertexv ∈ V(GL) we
determine inO( f 2

0 n) steps all adjacent vertices by first collecting allw ∈ V(GL) for
which D(L(v),L(w)) = ∅, then taking as the adjacent vertices ofv thosew for which
(L(v)◦L(w))0 is maximal among all such sets withw from the collection. The compari-
son ofGL andG can be done together with the construction ofGL. Obviously the overall
complexity is bounded byO(( f0 + f1)n)+ O( f 3

0 n2), where the later term is dominating
because off1 ≤ f 2

0 .

We discuss now the algorithmic characterization of unlabeled cocircuit graphs of uniform
oriented matroids.
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2.5.2 Proposition Let G be a graph. There exists an algorithm which decides whether G
is the cocircuit graph of some uniform oriented matroid(E,F ) or not, and this algorithm
runs in time O( f 3

0 f1n2), where f0 = |V(G)|, f1 = |E(G)|, and n= |E|.
Proof First we use the algorithm described in Section 2.4 in order to obtain a labelL of
G and to decide whetherG is a cocircuit graph with M-labelL. This is possible in time
O( f 3

0 f1n2). It remains to check whetherG is the cocircuit graph of someuniformori-
ented matroid. For this we simply check whetherf0 = 2

( n
r −1

)
and whether all labelsL(v)

have cardinalityr − 1, wherer is determined from a vertex degree (e.g., see initialization
of algorithm MLABELFROMCOLINECYCLES).

2.6 Open Problems

We discuss in this section some open problems that are closely related to the results of the
present chapter. We concentrate on the case of uniform cocircuit graphs.

We have proved that the pairs of antipodal vertices are determined by the cocircuit graph
of a uniform oriented matroid up to graph isomorphism, but it is an open question whether
they are uniquely determined by the graph:

Open Problem 1: Does there exist a uniform cocircuit graph G with AP-labels A and
Ã such that A6= Ã?

We know that in the uniform case the distance between two antipodal vertices is
|E| − rank(M) + 2 and that there are exactly 2(rank(M) − 1) edge-disjoint shortest
paths between them. We do not know whether this property is enough to characterize the
antipodal pairs; if it is sufficient, we can detect the negative of a cocircuit quite easily
(remember that one can compute efficiently rank(M) and|E| from |V(G)| and|E(G)|):

Open Problem 2: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(M) ≥ 2 and AP-label A andv,w ∈ V(G) such thatw 6= A(v)
and dG(v, w) = n − r + 2, where n= |E| and r = rank(M) are determined by G?

Open Problem 3: Does there exist a cocircuit graph G of a uniform oriented matroid
M with r := rank(M) ≥ 2 and AP-label A andv,w ∈ V(G) such thatw 6= A(v)
and there are exactly2(r − 1) edge-disjoint shortest paths betweenv andw?

It is also an open question whether antipodal pairs are characterized as farthest pairs inG,
i.e., whether the distance between two verticesv andw in G is equal to the diameter if
and only ifv = w. It is easy to see that this is not true for non-uniform oriented matroids.

Open Problem 4: Does there exist a cocircuit graph G of a uniform oriented matroid
M with AP-label A andv ∈ V(G) such that dG(v, A(v)) 6= diam(G), or such that
dG(v, w) = diam(G) for somew 6= A(v)?
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Finally it is an open problem whether the diameter of a cocircuit graph is bounded linearly
in n = |E|:

Open Problem 5:Does there exist a constant k such that for every cocircuit graph G of
an oriented matroidM = (E,F ) holdsdiam(G) ≤ k · |E|?

We can show the following quadratic bound on the diameter of a uniform cocircuit graph:

2.6.1 Proposition Let M = (E,F ) be a uniform oriented matroid and G its cocircuit
graph. Note that r= rank(M) and n = |E| are determined by G. The diameter of G is
bounded by

diam(G) ≤ n − r + 2 +
min(r −2,n−r )∑

k=1

(⌊
n − r − k

2

⌋
+ 1

)
.

Proof The proof is mainly based on Lemma 2.3.5 (iii). Fix any vertexv0 ∈ V(G). The
maximum distance of any coline cycle inG is bounded byr − 2 (since|U | = r − 2 for
any colineU ) andn − r + 1 (since|U \ L(v0)| ≤ |E \ L(v0)| = n − r + 1). A coline
cycle contains 2(n − r + 2) vertices, hence Lemma 2.3.5 (iii) implies that every vertex on
a coline cycle of distancen − r + 1 is on a coline cycle of distancen − r . Consider some
vertexv ∈ V(G). The above arguments imply that there is a coline cyclec of distance
k ≤ min(r − 2, n − r ) which containsv. If k = 0 then obviouslydG(v0, v) ≤ n − r + 2.
If k ≥ 1 we show thatv is connected to some vertexv′ which is contained on a coline
cycle of distancek − 1 with dG(v, v

′) ≤ ⌊n−r −k
2

⌋ + 1, which implies the claim. We can
find suchv′ onc, sincec contains 2(k+1) vertices on at least one coline cycle of distance
k−1 and hence 2(n−r −k) vertices different fromv and its antipodev which do not have
this property (see Lemma 2.3.5 (iii)). As every pair of antipodes is contained in the same
coline cycles, the minimum distance ofv to av′ which lies on a coline cycle of distance
k − 1 is at most

⌊n−r −k
2

⌋ + 1.

The above bound is tight in the special (and trivial) cases therer = 2 or r = |E|. Fur-
thermore a similar proof extends the bound to some quadratic bound for cocircuit graphs
of general oriented matroids.
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Chapter 3

Generation of Oriented Matroids and
Isomorphism Classes

3.1 Introduction

The present chapter introduces the generation problem of oriented matroids, the funda-
mental question of constructing all oriented matroids of some given sizen of the ground
setE and rankr :

Oriented Matroid Generation Problem: Given integers n and r,
generate all oriented matroidsM = (E,F ) with n = |E| and r = rank(M).

If we assume some canonical way to label the elements, sayE = {1, 2, . . . , n}, the ori-
ented matroid generation problem is finite: Obviously|F | ≤ 3n and hence there are not
more than 2(3

n) oriented matroids withn elements; furthermore any set of sign vectors can
be checked in polynomial time whether it is the set of covectors of an oriented matroid of
rankr . However, for methods of theoretical and practical interest we will have to exploit
the properties of oriented matroids much more.

The generation problem is motivated by several questions in discrete geometry which all
are very hard to resolve, such as classification of combinatorial types of point configura-
tions, polytopes, hyperplane arrangements, or realizability problems concerning abstract
combinatorial manifolds. Having a classification of combinatorial types makes it possi-
ble to test conjectures against this complete set of problem instances. On the other hand,
the study of methods for efficiently generating oriented matroids leads to new results for
oriented matroid representations.

Techniques for listing oriented matroids for smalln andr were studied, among others, by
Bokowski, Sturmfels, and Guedes de Oliveira (e.g., [BS87, BS89, BGdO00]) using the
chirotope axioms of oriented matroids. They also showed by successful applications to
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geometric embeddability problems the usefulness of oriented matroid generation. How-
ever, it seems that the methods are designed primarily for the case of uniform oriented
matroids. Our approach is based on graph theoretical representations of oriented matroids
(tope graphs and cocircuit graphs), and we will discuss methods which work for general
oriented matroids (especially also non-uniform oriented matroids). One of our methods
can be considered as a more general variant of an algorithm of Bokowski and Guedes de
Oliveira [BGdO00] in a dual setting; however, our representation leads to implementa-
tions which are able to handle easily any single element extension in general rank, for
non-uniform and uniform oriented matroids as well.

Many questions which can be solved when having a complete list of oriented matroids
for given r andn only depend on the isomorphism class, e.g., questions concerning the
face lattice of an oriented matroid. Furthermore, other classes of oriented matroids (like
reorientation classes) are usually obtained rather easily from the isomorphism classes.
This motivates to generate isomorphism classes first and then finer classifications in a
separate step. Finally, we will see that the methods for generating oriented matroids can
be restricted quite naturally to generation of isomorphism classes only. Hence, we will
concentrate on the generation of isomorphism classes:

Isomorphism Class Generation Problem:Given integers n and r,
generate all oriented matroidsM = (E,F ) with n = |E| and r = rank(M) up to
isomorphism, i.e., generate one representative from every isomorphism class where
the representative is assumed to be simple.

With our restriction to simple oriented matroids the problem becomes well-defined as then
n = |E| is the number of parallel classes (of non-loop elements) which is an invariant of
the isomorphism class.

Before we introduce a general, incremental method for the generation of isomorphism
classes of oriented matroids in Section 3.3 and the underlying representations by graphs
(see Section 3.4), we consider the role of duality in the context of oriented matroid gener-
ation and some special cases where duality is very helpful.

3.2 Duality and the Generation of Isomorphism Classes

This section discusses the duality of oriented matroids in relation to the generation of
isomorphism classes. The key observation is that all oriented matroids on a ground setE
and rankr can be obtained by dualization from a complete list of oriented matroids onE
and rank|E| − r (see Corollary 0.5.10); the computation of the dual can be assumed to
be easy (cf. Lemma 0.9.8). Essentially it is sufficient to generate only one of the two lists
of oriented matroids. However, for the generation of isomorphism classes the dualization
approach is not that straightforward, as we will discuss in the following.

3.2.1 Definition (Co-parallel, Co-simple)Let M = (E,F ) be an oriented matroid.
Two elementse, f ∈ E are calledco-parallel if e, f are parallel inM∗. M is called
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co-simpleif it has no coloops and no co-parallel elements (or, equivalently, ifM∗ is sim-
ple).

It will be useful to characterize co-parallel elements as follows:

3.2.2 Lemma Let M = (E,F ) be an oriented matroid. Two elements e, f ∈ E are
co-parallel if and only ifrank(M/(E \ {e, f })) = 1.

Proof Let M = (E,F ) be an oriented matroid. Consider its dualM∗, two elements
e, f ∈ E, and the deletion minorM∗ \ (E \ {e, f }), which only has the two elementse
and f in the ground set. By Lemma 0.7.5,eand f are parallel elements ofF ∗ if and only
if rank(M∗ \ (E \ {e, f })) = 1. By Corollary 0.5.10 and Lemma 0.5.2, this is the case if
and only if rank(M/(E \ {e, f })) = 1.

The main difficulty of the dualization approach comes from the fact that, according to our
definition of isomorphism of oriented matroids (see Definition 1.1.2), dualization does
not preserve isomorphism. For example, the duals of two isomorphic oriented matroids
which only differ by loops differ by coloops and are not isomorphic. One might prefer
a different definition of the notion of isomorphism which does not allow the introduction
or deletion of loops and parallel elements but only the renaming of elements; then duality
would preserve isomorphism, however, the one-to-one correspondence with face lattices
is lost. Another idea is to generate only those oriented matroids (up to reorientation and
renaming of the elements) which are simple and also co-simple; again, then the lists be-
come symmetric under dualization but no longer reflect a complete list of isomorphism
classes in our (preferred) sense.

In order to generate all isomorphism classes from dual oriented matroids, we will generate
a complete list of co-simple oriented matroids as we discuss in detail for the special cases
of oriented matroids withn = |E| elements which are of rankn, n − 1, andn − 2.

An oriented matroid withn elements of rankr = n is, up to the naming of the elements,
uniquely determined as follows (hence there is only one isomorphism class for every
r = n):

3.2.3 Lemma (Oriented Matroids with rank(M) = |E|) Let M = (E,F ) be an ori-
ented matroid withrank(M) = |E|. ThenF = {−,+, 0}E. In particular,M is uniform.

Proof Let M = (E,F ) be an oriented matroid with rank(M) = |E|. By Corol-
lary 0.5.10, the dual ofM is an oriented matroid of rank 0, henceM∗ = (E, {0}) (cf.
Lemma 0.7.14). SinceM is the dual ofM∗ (see Proposition 0.5.8), the claims follows
from the definition of duals (Definition 0.5.1).
A different proof (which does not use duality) can be given using similar arguments as in
the proof of Lemma 1.5.3.

Duals of oriented matroids of rankn − 1 have rank 1. By Lemma 0.7.14, there are up to
renaming of the elements inE only n oriented matroids of rank 1, sayM0, . . . ,Mn−1,
where the index indicates the number of loops. The duals of those of them which are
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co-simple represent the isomorphism classes of the oriented matroids of rankn − 1. The
only non-loop element ofMn−1 is a coloop, henceMn−1 is not co-simple. The remaining
oriented matroidsM0, . . . ,Mn−2 do not have coloops. If for someMi there exist co-
parallel elementse, f , then by Lemma 3.2.2 rank(Mi /(E \ {e, f })) = 1. Obviously, this
is only the case if all elements inE \ {e, f } are loops; hence, onlyMn−2 (andMn−1)
may have co-parallel elements, which is indeed the case. In sum,M0, . . . ,Mn−3 are
co-simple, andMn−2 andMn−1 are not:

3.2.4 Lemma There are n− 2 isomorphism classes of (simple) oriented matroids of n
elements and rank n− 1.

For the study of oriented matroids of rankn − 2 we basically use the same idea as above
in the case of rankn − 1. Without loss of generality,E = {1, . . . , n}. In order to count
all isomorphism classes in rankn − 2, we count the number of co-simple oriented ma-
troids onE of rank 2 up to permutation and reorientation of the elements. The case of
rank 2 is well-characterized (see Corollary 1.4.4), and every oriented matroid of rank 2
up to permutation and reorientation of the elements is represented by a circular diagram
indicating the cardinality and the (circular) order of the parallel classes of non-loop el-
ements and the number of loops. Figure 3.1 shows all diagrams with 2 and 3 elements
(the number in the center is the number of loops). These diagrams can also be written,

1

1

0 1

1

1 2

1

0

1

1

1

0

Figure 3.1: Diagrams of oriented matroids of rank 2 with 2 and 3 elements

e.g., in the following notation:(1, 1; 0), (1, 1; 1), (1, 2; 0), (1, 1, 1; 0). The 7 diagrams
with 4 elements are the last three diagrams of Figure 3.1, where the number of loops
is increased by 1, together with the diagrams of Figure 3.2, in short notation(1, 1; 2),
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Figure 3.2: Diagrams of oriented matroids of rank 2 with 4 non-loop elements

(1, 2; 1), (1, 1, 1; 1), and(1, 3; 0), (2, 2; 0), (1, 1, 2; 0), (1, 1, 1, 1; 0). The diagrams are
unique up to symmetry, e.g.,(1, 2, 3; 0) is equivalent to(1, 3, 2; 0). Simplifying our no-
tation, we write(n1, . . . , nk) for (n1, . . . , nk; 0) if there is no loop. The diagrams for 5
elements are those for 4 elements with one additional loop and the following which do
not have loops:(1, 4), (2, 3), (1, 1, 3), (1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1, 1). Such diagrams
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can be enumerated rather easily also for a higher number of elements. It remains to dis-
cuss which diagrams correspond to co-simple oriented matroids. An element is a coloop
if and only if the rank decreases if it is deleted. Hence, a coloop is the only element of
its parallel class and there is only one other parallel class of non-loop elements. Among
the diagrams discussed so far, those having a coloop are(1, 1), (1, 2), (1, 3), (1, 4), and
their extensions by loops. Two elementse, f are co-parallel, according to Lemma 3.2.2,
if rank(M/(E \ {e, f })) = 1. Hence, a diagram has co-parallel elements if there is a par-
allel class of one or two non-loop elements and only one other parallel class of non-loop
elements or there are two parallel classes of one non-loop element and only one further
parallel class of non-loop elements. For example, co-parallel elements are in oriented
matroids represented by(1, 1, 1), (2, 2), (1, 1, 2), (2, 3), (1, 1, 3). Finally, the diagrams
of co-simple oriented matroids up to 5 non-loop elements are: none with less than 4
elements,(1, 1, 1, 1) with 4 elements, and(1, 2, 2), (1, 1, 1, 2), (1, 1, 1, 1, 1) with 5 ele-
ments. Further enumeration leads to 8, 13, 25, 41, 73, 121, 219, 375, 682, 1219, 2245,
4107, 7680, 14305, 27007 co-simple non-loop diagrams forn = 6, . . . , 20, respectively.
The corresponding numbers with loops are the sums of the firstn numbers without loops.
Hence, there are 1, 4, 12, 25, 50, 91, 164, 285, 504, 879, 1561, 2780, 5025, 9132, 16812,
31117, 58124 isomorphism classes of (simple) oriented matroids of rankn − 2 with n
elements forn = 4, . . . , 20, respectively.

The duality approach for the investigation and enumeration of combinatorial objects has
also been applied earlier, as in the context of combinatorial types of convex polytopes
(e.g., [Grü67, Llo70, Stu88], see also Section 7.4). In some cases, the enumeration leads
to a formula for the number of instances for givenn; it is possible that there is also
a formula for the number of isomorphism classes of oriented matroids of rankn − 2.
The general case, where the rank is notn, n − 1, or n − 2, needs further investigation;
at least there is no simple characterization of the duals (which are oriented matroids of
rank 3, 4, . . . ), and hence no straightforward enumeration of all cases. Even if duality is
very helpful in special cases and may reduce the amount of enumeration in higher rank
considerably, we restrict ourselves for the following investigations to primal generation
methods. These methods will handle all cases in the same way and produce complete
listings of isomorphism classes also for high rank.

3.3 Incremental Method for the Generation of Isomor-
phism Classes

This section presents an incremental method of the generation methods which are dis-
cussed in the following chapters. The oriented matroids are generated incrementally by
a number of single element extensions, i.e., extensions where only one new element is
introduced. This generation by means of single element extensions was used also in the
former methods for the generation of oriented matroids. We will extend these methods
such that only isomorphism classes of oriented matroids are generated.

For our methods we consider the following well-characterized cases as starting points of
the incremental generation process:
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• r ≤ 1: Oriented matroids of rank 1 or 0 have been characterized in Lemma 0.7.14
and are rather trivial.

• r = 2: These oriented matroids are well-characterized (see Corollary 1.4.4).

• r = n: An oriented matroid whose rank equals the numbers of elements can be
characterized as stated in Lemma 3.2.3.

3.3.1 Definition (Extension, Single Element Extension)Let be M = (E,F ) and
M′ = (E′,F ′) oriented matroids. We callM′ an extension ofM if M = M′ \ R for
someR ⊆ E′. We callM′ an single element extension ofM if M = M′ \ f for some
f ∈ E′.

Every oriented matroidM = (E,F ) can be obtained by single element extensions from
some oriented matroid with less than|E| elements. The incremental method may start
with some trivial oriented matroid with 0 or 1 element. Some of the single element exten-
sions may increase the rank (by introducing a coloop). The following lemma states that
such rank increasing extensions can be avoided:

3.3.2 Lemma Every oriented matroidM = (E,F ) can be obtained by single element
extensions from an oriented matroid of same rank r= rank(M) with r elements.

Proof Let M = (E,F ) be an oriented matroid. If all elements inE are coloops then
r = |E|, otherwise there existse ∈ E which is not a coloop, and by Corollary 0.4.9 (i)
the rank ofM \ e is the same as the rank ofM. This proves that every oriented matroid
can be obtained by single element extensions from an oriented matroid of the same rank
r which hasr elements.

For the generation of oriented matroids (or of isomorphism classes of oriented matroids)
both approaches are of interest, generation fromn = 0, 1, 2 and generation fromn = r
without increasing rank.

Let IC(n, r ) denote the set of all isomorphism classes of oriented matroids withn parallel
classes inE \ E0, whereE0 is the set of loops, and of rankr . Every class in IC(n, r ) can
be represented by an oriented matroid of rankr with n elements in the ground set which
is simple, i.e., there are no parallel elementse 6= f and no loops. We will always think of
IC(n, r ) as a set or list of such representatives. Note that IC(n, r ) is empty ifn < r or if
r < 2 andn 6= r . Figure 3.3 shows a diagram of all nonempty IC(n, r ) up ton = 5, and
the arrows indicate how these isomorphism classes may be generated as discussed in the
following.

For the incremental step in the generation method consider some IC(n, r ). By Corol-
lary 0.4.9 (i) every representative of IC(n, r ) is a single element extension of oriented
matroids represented in IC(n − 1, r − 1) and IC(n − 1, r ). However, in general every
isomorphism class in IC(n, r ) is obtained in multiple ways since every oriented matroid
with n elements is a single element extension of up ton different deletion minors, further-
more different single element extensions of one oriented matroid may be isomorphic. This
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IC(0, 0)
IC(1, 1)

IC(2, 2)

IC(3, 2)

IC(3, 3)

IC(4, 2)

IC(4, 3)

IC(4, 4)

IC(5, 2)

IC(5, 3)

IC(5, 4)

IC(5, 5)

Figure 3.3: Relation of isomorphism classes of oriented matroids under single element
extensions forn ≤ 5

problem of multiple generation will be attacked in (at least) two ways: not all but only suf-
ficiently many extensions are considered, and extensions are tested for being isomorphic,
e.g., by means of canonical representations of isomorphism classes. Let us summarize
which problems have been addressed in this section:

Single Element Extension Problem:Given an oriented matroidM,
find all single element extensions ofM.

Multiple Extension Reduction Problem: Find a rule which identifies redundant single
element extension such that every isomorphism class of oriented matroids can be
obtained by a sequence of non-redundant single element extensions.

Isomorphism Checking Problem: Given two oriented matroidsM andM′,
decide whetherM andM′ are isomorphic or not.

Isomorphism Class Representation Problem:Find a canonical representation of iso-
morphism classes of oriented matroids (say, in form of an algorithmICREP) such
that the representation of two oriented matroids is the same if and only if they are
isomorphic:ICREP(M) = ICREP(M′) if and only ifM′ ∈ IC(M).

The combination of the elements discussed so far leads to an incremental method for the
generation of oriented matroids up to isomorphism. Starting from IC(2, 2), say, which
consists of one class (e.g., represented by the oriented matroid withE = {1, 2}, and
F = {−,+, 0}2), the method generates as sketched above IC(n, r ) with increasingn
and r (i.e., in some order such that IC(n − 1, r − 1) and IC(n − 1, r ) are generated
before IC(n, r )). The diagram in Figure 3.3 shows which isomorphism classes of oriented
matroids are obtained from others by single element extensions (up ton = 5). In a
variant of the method the starting point is IC(r, r ) for given r and generates IC(n, r )
with increasingn using only non-coloop extensions. Every single element extension is
then tested against the others w.r.t. isomorphism such that only a list of representatives of
IC(n, r ) is kept.
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3.4 Graph Representations in Generation Methods

In any generation method, the choice of the underlying oriented matroid representation is
of great importance. The representations which are discussed in the following are mainly
based on graphs that are defined by the oriented matroids, namely tope graphs (see Chap-
ter 1) and cocircuit graphs (see Chapter 2). These graph representations are well suited to
the generation of isomorphism classes of oriented matroids:

• isomorphic oriented matroids have same cocircuit graph and same tope graph (in
fact, tope graphs characterize isomorphism classes; for cocircuit graphs we will add
extra information),

• graphs are a relatively compact structure,

• all isomorphism classes can be represented without special treatment (i.e., also non-
uniform cases in any rank),

• the graph representations are useful for the solution of all of the problems mentioned
in the previous section.

A short discussion of the well-characterized oriented matroids may illustrate the repre-
sentation of isomorphism classes by tope graphs and cocircuit graphs.

• The oriented matroid forr = 0 (and hencen = 0) is represented by the tope graph
which has one vertex and no edges, or the cocircuit graph which is the empty graph.

• The oriented matroid forr = 1 (and hencen = 1) is represented by the tope graph
which has two vertices connected by one edge, or the cocircuit graph which has two
vertices and no edge.

• The oriented matroid forr = 2 andn ≥ 2 is represented by the tope graph which
is a cycle of length 2n, or the cocircuit graph which is a cycle of length 2n (see
Proposition 1.2.9 and Lemma 2.2.1).

• The oriented matroid forr = n is represented by

– the tope graph which is the 1-skeleton of ther -dimensional hypercube (see
Figure 3.5 for an illustration withr = 3), or

– the cocircuit graph which is the 1-skeleton of ther -dimensional cross poly-
tope, i.e., every vertex is neighbor of every other vertex except one (see Fig-
ure 3.6 for an illustration withr = 3); the cocircuit graph will be considered
together with a list of coline cycles.

Let us illustrate the use of cocircuit graphs and tope graphs for the example of the single
element extension problem. Consider a pseudosphere arrangement (see Section 0.1) with
cell complexK and corresponding oriented matroidM = (E,F ). Remember that the
cocircuit graph is the 1-skeleton ofM (or K), the tope graph is defined by the adjacency



3.4 GRAPH REPRESENTATIONS INGENERATION METHODS 103

relation of the topes inM (which corresponds to the obvious adjacency relation of the
d-faces inK). If a new elementf 6∈ E is added, i.e., a new(d − 1)-dimensional pseu-
dosphereSf is introduced, this defines a new complexK ′ and a single element extension
M′ = (E ∪ { f },F ′) of M (see also Figure 3.4, the new sphere is dashed).

f

+ −A

A

B
B

C

C

D

D

Figure 3.4: Extension of pseudosphere arrangement

The new elementf partitions the set of topes into three parts, those which are on the−
side of f , those on the+ side of f , and those “cut” byf : In the cell complexK these
correspond tod-faces which are on the− or + side of f andd-faces which are divided
by Sf into two newd-faces, respectively. Hence this single element extension defines
a signature on the vertex set of the tope graph where vertices are labeled by−, +, or 0
according to the three mentioned cases (see Figure 3.5). If a signature comes from a single
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Figure 3.5: Localization of tope graph

element extension as discussed above, then it is called alocalizationof the tope graph.
We will see that localizations characterize single element extensions up to reorientation
and relabeling of the new element, and we will discuss single element extensions in terms
of localizations of tope graphs (see Chapter 4). Our methods will generate localizations
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of a given tope graphsG, and it will be easy to extendG for every localization to the tope
graph of the corresponding single element extension.

Similarly as for topes, the new elementf partitions the set of cocircuits into three parts,
as correspondingly the 0-faces in the cell complexK are on the− or + side of Sf or
contained inSf . This partition defines a signature on the vertex set of the cocircuit graph
(see Figure 3.6). Again, if a signature comes from a single element extension then it is
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Figure 3.6: Localization of cocircuit graph

called alocalizationof the cocircuit graph. Note that in general the cocircuit graph is not
sufficient to characterize the face lattice ofK, and similarly the notion of a localization
is not well-defined without some extra information which is added to the cocircuit graph.
We will see that the set of coline cycles will be perfect when discussing localizations of
cocircuit graphs, as well as for characterizations as for generation of localizations. Local-
izations of a cocircuit graph, given with an M-label up to isomorphism, determine single
element extensions up to isomorphism. Therefore, we can generate all single element ex-
tensions of a given oriented matroid by generating all localizations of its cocircuit graph
by extending the cocircuit graph and its M-label for any given localization.

The following chapters discuss specific algorithmic solutions of the generation problem
and the related problems: in Chapter 4 the methods are based on tope graphs, in Chapter 5
on cocircuit graphs, finally Chapter 6 is based on the results of Chapter 5 and in addition
introduces the representation of chirotopes (see also Section 0.9) which are helpful for
the definition of canonical representations of isomorphism classes. The main results of
Chapters 4 and 5 are also presented in [FF01].



Make no collection of it: let him show
His skill in the construction.

CYMBELINE (5,5)

Chapter 4

Tope Graphs and Single Element
Extensions

This chapter presents methods which solve the isomorphism class generation problem of
oriented matroids and are based on tope graphs of oriented matroids. For the problem
statements and an overview of the approach see Chapter 3. A strong motivation for the
use of tope graphs of oriented matroids has been the fact that a tope graph characterizes
the isomorphism class of the corresponding oriented matroid (see Corollary 1.4.2) and
that single element extensions of acycloids, a generalization of oriented matroids (see
Section 1.2), can be characterized in terms of tope graphs as discussed in the following.

4.1 Tope Graphs and Isomorphism Classes of Oriented
Matroids

We discuss in this section in more detail the connections between tope graphs and isomor-
phism classes of oriented matroids, before we enter the discussion of generation methods
in the following sections.

Let G be the tope graph of an oriented matroidM, associated by a bijectionL : V(G) →
T to the set of topes. By Corollary 1.4.2,M is determined byG up to isomorphism,
and clearly also every oriented matroid in IC(M) hasG as its tope graph. Even more
remarkable, the discussion of algorithm ACYCLOIDORIENTATIONRECONSTRUCTIONin
Section 1.4 shows that alsoL is determined up to isomorphism byG, i.e., if L andL′ are
two associating bijections fromV(G) to tope setsT andT ′ of oriented matroidsM and
M′, respectively, then there exists an isomorphism betweenM andM′ which also maps
L(v) to L′(v) for every vertexv ∈ V(G).

For the following detailed discussion of isomorphisms of oriented matroids and tope
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graphs the notion of “isomorphism” has to be very clear. By Definition 1.1.2, two ori-
ented matroids are isomorphic if their sets of covectors (or, equivalently, their sets of
topes) coincide under some relabeling and reorientation of the elements, where relabeling
includes the creation and deletion of parallel elements and loops. Then an isomorphism
is a map which relabels (in the same sense as before) and reorients elements. Now, an
automorphism of an oriented matroid is a self-isomorphism, and naturally relabeling here
will not delete or create any elements as the ground set remains the same, hence relabeling
then means permuting the elements in the ground set. Furthermore, it is not interesting to
study automorphism which permute elements within parallel classes or loops, therefore
we restrict the following discussion to simple oriented matroids where all parallel classes
have cardinality one and no loops exist.

We denote the concatenation of mapsρ, σ simply byρσ (ρ afterσ ), and the inverse of a
bijectionτ by τ−1.

4.1.1 Definition (Aut(M)) Let M = (E,F ) be a simple oriented matroid, i.e., there are
no parallel elementse 6= f and no loops. Then Aut(M) is the set of automorphisms of
M, i.e.,φ = ρπ with ρ a reorientation andπ a permutation onE belongs to Aut(M) if
and only ifF = {φ(X) | X ∈ F }.

Note that it is equivalent to define Aut(M) by topes instead of covectors, i.e., replacing
F by T in Definition 4.1.1 leads to the same definition (cf. Proposition 0.7.3).

It is remarkable how closely related automorphisms of tope graphs and oriented matroids
are (for the notion of groups and group isomorphisms see for example [Asc00]):

4.1.2 Proposition Let M be a simple oriented matroid with tope graph G. ThenAut(G)
andAut(M) are isomorphic groups.

Proof Let M be a simple oriented matroid with tope graphG and associating bijection
L : V(G) → T .

• φg := LgL−1 ∈ Aut(M) for everyg ∈ Aut(G): By Corollary 1.4.2,T is deter-
mined byG up to isomorphism, i.e., sinceg is a graph automorphism there exist
φ ∈ Aut(M) such thatLg = φL, henceφg = LgL−1 = φ ∈ Aut(M).

• gφ := L−1φL ∈ Aut(G) for every φ ∈ Aut(M): For all v,w ∈ V(G)
and everyφ ∈ Aut(M), |D(L(v),L(w))| = |D(φL(v), φL(w))|, hence (by
Proposition 1.2.4) all distances inG are preserved undergφ := L−1φL, hence
gφ ∈ Aut(G).

• g 7→ φg andφ 7→ gφ are inverse to each other, which follows by definition. Hence
these maps establish bijections between Aut(G) and Aut(M). Furthermore,

φgh = LghL−1 = LgL−1LhL−1 = φgφh

for all g, h ∈ Aut(G), and

gφψ = L−1φψL = L−1φLL−1ψL = gφgψ

for all φ,ψ ∈ Aut(M).
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Of more practical interest is the question of how two tope graphs can be tested for be-
ing isomorphic. The method which is described in the following is motivated by al-
gorithm ACYCLOIDORIENTATIONRECONSTRUCTION(see Section 1.4). This algorithm
constructs an orientation of the set of topes by choosing a pairv, v of antipodal ver-
tices in G and some shortest path fromv to v. For a canonical choice of the ground
set, sayE = {1, . . . , n} wheren = diam(G), the orientation is uniquely determined
by the sequence of then edges fromv to v. Let G andG′ be tope graphs of oriented
matroids. ForG choose an antipodal pairv, v and a shortest pathp from v to v. If
G andG′ are isomorphic or, equivalently, ifG andG′ are defined by oriented matroids
from the same isomorphism class, then the diameter ofG′ equals the diameter ofG, i.e.,
n = diam(G) = diam(G′), and there exists a pair of antipodal verticesv′, v′ ∈ V(G′)
and a shortest pathp′ from v′ to v′ in G′ such that algorithm ACYCLOIDORIENTATION-
RECONSTRUCTIONfinds the same tope set fromG usingv, v and p and fromG′ using
v′, v′ and p′. If G andG′ are not isomorphic there are no suchv′, v′ and p′. Hence, it
is sufficient for testing tope graph isomorphisms to check of all shortest pathsp′ between
antipodal verticesv′, v′ in G′. This leads to an algorithm which is quite efficient compared
to general graph isomorphism tests.

4.2 Localizations and Tope Graph Extensions

This section discusses the single element extension problem and its relation to tope graphs
in terms of localizations which has been illustrated already in Section 3.4. The present
section discusses properties of localizations, where the following sections present algo-
rithmic solutions to the localization generation problem, the problem to find all localiza-
tions of a given tope graph. As our main concern is the generation of isomorphism classes
of oriented matroids, and since every isomorphism class can be represented by a simple
oriented matroid, we restrict the following discussion to simple oriented matroids.

It will be helpful to introduce additional notation concerningsignaturesof graphs, i.e.,
maps of the formσ : V(G) → {−,+, 0}. Every signatureσ defines a partition on the
vertex setV(G) by Vs := {v ∈ V(G) | σ(v) = s} for s ∈ {−,+, 0}. In addition we
setV	 := V− ∪ V0 andV⊕ := V+ ∪ V0. Furthermore, letG−, G+, G0, G	, andG⊕
denote the subgraphs ofG induced byV−, V+, V0, V	, andV⊕, respectively.

Consider two simple oriented matroidsM = (E,F ) andM′ = (E′,F ′) with tope sets
T andT ′, respectively, such thatM = M′ \ f , i.e.,M′ is a single element extension ofM.
Associating the tope graphG of M to T by L : V(G) → T , the above single element
extension defines a signatureσ : V(G) → {−,+, 0} on the vertex set ofG by

σ(v) :=



+ if TE = L(v) impliesTf = + for T ∈ T ′,
− if TE = L(v) impliesTf = − for T ∈ T ′,
0 otherwise

for v ∈ V(G). We then callσ the localization of G w.r.t.L and the single element
extensionM → M′. It is clear that thenσ determines the extended tope setT ′ by

T ′ := {
T ∈ {+,−}E∪{ f } ∣∣ there existsv ∈ V(G) s.t. TE = L(v) andσ(v) ∈ {Tf , 0}} .
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For any tope graphG of an oriented matroid, the property of a signatureσ : V(G) →
{−,+, 0} being some localization ofG or not is independent from the choice ofM, L,
andM′ sinceG determinesM (andL) up to isomorphism and thenM′ is determined by
T ′ as defined above:

4.2.1 Definition (Localization of Tope Graph) Let G be the tope graph of some ori-
ented matroid. A signatureσ : V(G) → {−,+, 0} is calleda localization of Gif there
existM, L, andM′ such thatσ is the localization ofG w.r.t. L and the single element
extensionM → M′.

The tope graphG′ of the single element extensionM′ is determined byG andσ :

4.2.2 Proposition ([FH93]) The tope graph of the single element extensionM′ deter-
mined by G and a localizationσ of G is a graph G′ with vertex set

{
v− ∣∣ v ∈ V	} ∪ {

v+ ∣∣ v ∈ V⊕}
and edge set
{{v−, v+} ∣∣ v ∈ V0} ∪ {{v−, w−} ∣∣ {v,w} ∈ E(G	)

} ∪ {{v+, w+} ∣∣ {v,w} ∈ E(G⊕)
}
.

We describe (sloppily) in words how the extended tope graphG′ is obtained fromG andσ .
Every vertexv in V0 is split into two verticesv− andv+ which are connected by an edge.
We will see further below that there are no edges inG connectingV− andV+. Hence
all edges fromG are kept or doubled (if inE(G0)), wherev−-vertices (v+-vertices) are
connected toV	-vertices (V⊕-vertices) only, respectively.

Proof of Proposition 4.2.2 Let G be the tope graph of an oriented matroidM = (E,F )
with associating bijectionL and tope setT , furthermore letσ be a localization ofG
defining a single element extensionM′ = (E ∪ f,F ′). It is not difficult to see the
correctness of the tope graph extension when considering the setT ′ of extended topes. For
every topeT ′ ∈ T ′ there is a unique vertexv ∈ V(G) such thatL(v) = T ′

E. If σ(v) = 0
then also f T ′ ∈ T ′, and we splitv into two verticesv−, v+ ∈ V(G′); otherwiseL(v) is
not cut by the new elementf and we simply mark the corresponding vertex inV(G′) by
vs according tos = σ(v) = T ′

f . The set of edges inG′ is determined by the fact that in
simple oriented matroids (what we assumed) two vertices of the tope graph are adjacent
if and only if the corresponding topes disagree in exactly one element (see Lemma 1.2.3).
Hence there is an edge{v−, w−} (or {v+, w+}) if and only if the corresponding verticesv,
w have been adjacent inG, furthermore all verticesv−, v+ coming from one split vertex
will be adjacent inG′.

Before we state some important properties of localizations, remember the following fun-
damental facts about tope graphs of oriented matroids (see Section 1.2). LetG be the
tope graph of a simple oriented matroidM andL : V(G) → T an associating bijection
between the vertex set ofG and the tope set ofM. Then the length of any shortest path
x = u0, . . . , ud = y in G is d = |D(L(x),L(y))|, and then|D(L(ui−1),L(ui ))| = 1
for i ∈ {1, . . . , d} (see Proposition 1.2.4). For every vertexv ∈ V(G) there is a unique
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vertexv ∈ V(G) (called the antipode ofv) such thatdG(v, v) = diam(G), and then
L(v) = −L(v) (see Corollary 1.2.5).

A graph theoretical characterization of the localizations of a given tope graph is not
known, but the following properties necessarily hold:

4.2.3 Lemma ([FH93]) Let G be the tope graph of an oriented matroid andσ : V(G) →
{−,+, 0} a localization of G. Then the following properties are valid:

(L1) σ(v) = −σ(v) for all v ∈ V(G),

(L2) E(G) ∩ (V− × V+) = ∅, and

(L3) dG	(v, w) = dG(v, w) for all v,w ∈ V	, and dG⊕(v, w) = dG(v, w) for all
v,w ∈ V⊕.

Proof (L1) follows from the symmetry (A2) of tope sets, the definition of antipodes, and
by Proposition 1.2.4 which implies thatL(v) = −L(v).
For (L2) consider an edge{v,w} ∈ E(G) with σ(v) = − andσ(w) = +. The topes
associated tov andw, sayV,W ∈ T , differ in exactly one signg ∈ E (we are considering
simple oriented matroids). The corresponding extended topesV ′,W′ differ in exactly two
signs, f andg. By the reorientation property (A1),f V ′ ∈ T ′ or g V ′ = f W′ ∈ T ′,
where the first would contradictσ(v) = − and the secondσ(w) = +.
For (L3) considerv,w ∈ V	 and the corresponding verticesv−, w− ∈ V(G′), where
G′ is the tope graph of the single element extension as discussed above. Remember for
the following that by Proposition 1.2.4 the distance in tope graphs is characterized by the
number of disagreeing elements of the corresponding topes. A shortest pathp from v tow
in G defines a corresponding pathp′ in G′ betweenv− andw− which is again a shortest
path by the above characterization. Furthermore, all vertices onp′ correspond to topes
T ∈ T ′ with Tf = −, which is also implied by Proposition 1.2.4. Hence the given path
p is contained inG	, which proves thatdG	(v, w) = dG(v, w). The analogous claim for
G⊕ follows similarly (or by symmetry).

In the proof of Lemma 4.2.3 we only needed properties of acycloids. In fact, properties
(L1), (L2), and (L3) are characteristic for single element extensions of the tope graphs of
acycloids (see [FH93]), where the extension of the tope graph of acycloids is determined
as stated in Proposition 4.2.2 for localizations.

4.2.4 Definition (Acycloidal Signature) Let G be the tope graph of an oriented matroid.
We call a signatureσ of G an acycloidal signature of Gif (L1), (L2), and (L3) are
satisfied.

We strengthen the necessary properties of localizations using the separability of uncut
topes (see Section 1.3):

4.2.5 Theorem Let G be the tope graph of an oriented matroid andσ a localization of
G. Then:
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(L4) G− (and also G+) is a connected subgraph of G.

Proof Let M = (E,F ) be an oriented matroid with tope setT , tope graphG, and
associating bijectionL : V(G) → T . LetM′ = (E′,F ′) be the single element extension
of M defined by a given localizationσ of G. Denote byT ′ the tope set ofM′ and byG′
the tope graph ofM′. Then there existsf ∈ E′ such thatM = M′ \ f , and there is a
one-to-one correspondence between the topes in

T ′− := {T ∈ T ′ | Tf = − and f T 6∈ T ′}

and the vertices inV−. By Theorem 1.3.1, the subgraph ofG′ induced by the vertices
associated toT ′− is connected, which implies that the subgraphG− of G induced by the
vertex setV− is connected. Analogously (or by symmetry),G+ is connected.

We introduce two new notions of acycloidal signatures. The weaker notion will be used
in the generation methods discussed in Sections 4.3 and 4.4; the property (L3) is not
considered in the weaker notion since it will not be an invariant in the generation methods.

4.2.6 Definition (Weak and Strong Acycloidal Signature)Let G be the tope graph of
an oriented matroid andσ a signature ofG. We callσ a weak acycloidal signature of G
if (L1), (L2), and (L4) are satisfied anda strong acycloidal signature of Gif (L1), (L2),
(L3), and (L4) are satisfied.

Because of the examples of Section 1.3 we know that strong acycloidal signatures do not
characterize localizations of tope graphs of oriented matroids, but they are essential for
the algorithmic methods of the following sections. In fact, these generation algorithms
have been the motivation to investigate stronger properties of localizations which lead to
the result of Theorem 1.3.1 and Theorem 4.2.5. On the other hand there are algorithmic
characterizations of localizations of tope graphs:

4.2.7 Proposition Localizations of tope graphs of oriented matroids can be verified in
polynomial time.

Proof Since the extended tope graph can be constructed easily from a tope graph and a
localization as described in Proposition 4.2.2, the claim is a clear consequence of Corol-
lary 1.7.2.

In the incremental method for the generation of isomorphism classes of oriented matroids
(see Section 3.3) we described that a single element extension may or may not increase
the rank of the oriented matroid, and it is worth noting that the two cases (rank increases
or stays) can be recognized easily from the localization:

4.2.8 Lemma Let G be the tope graph of an oriented matroidM andσ a localization of
G. The rank of a single element extensionM′ according to G andσ is the same as the
rank ofM unlessσ(v) = 0 for all v ∈ V(G), thenrank(M′) = rank(M)+ 1.
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Proof Let G be the tope graph of an oriented matroidM with associating bijectionL :
V(G) → T , andσ a localization ofG, defining a single element extensionM′ of M,
where f is the new element. By Corollary 0.4.9 (i), the rank ofM′ is the same as the rank
of M unlessf is a coloop ofM′, and then then rank(M′) = rank(M)+ 1. We prove that
f is a coloop ofM′ if and only if σ(v) = 0 for all v ∈ V(G). Let D ′ denote the set of
cocircuits ofM′. If f is a coloop ofM′, by composition of the corresponding cocircuits
X,−X ∈ D ′ with X = { f } and any topeT ∈ T ′, f T ∈ T ′, which shows thatσ(v) = 0
for all v ∈ V(G). On the other hand, ifσ(v) = 0 for all v ∈ V(G) then f T ∈ T ′ for all
T ∈ T ′, and by Proposition 0.7.3 there is a cocircuitX ∈ D ′ with X = { f }, i.e., f is a
coloop ofM′, what completes the claim.

4.3 Reverse Search Method for the Generation of Local-
izations

Let G be the tope graph of some oriented matroidM = (E,F ); the goal of this section is
to find all tope graphs of single element extensions ofM up to graph isomorphism (which
is equivalent to finding all single element extensions up to oriented matroid isomorphism).
Note that our method is working with graphs and not with sets of sign vectors. The main
idea is to generate first all weak acycloidal signatures and then to test these signatures
for being strong acycloidal signatures, finally for being localizations (again in polynomial
time, see Proposition 4.2.7). The tope graphs of the extended oriented matroids (or, more
generally, of the extended acycloids) are easily obtained from the localizations (as deter-
mined in Proposition 4.2.2), and finally graph isomorphism checking (see Section 4.1)
leads to a set of representatives up to isomorphism.

The first step in our method is the generation of all weak acycloidal signatures of a given
tope graphG. Property (L4) is essential for our method as it makes it possible to generate
all weak acycloidal signatures ofG without repetition. Note that our algorithms cannot
be restricted to strong acycloidal signatures since property (L3) is not an invariant in the
generation process and hence the generation would become incomplete. For the genera-
tion we modify a reverse search method for the generation of all connected subgraphs of
a given graph [AF96]. Enumerate the vertices of the given tope graphG in an arbitrary
way such thatV(G) = {1, . . . , fd}. Remember that every weak acycloidal signatureσ

defines a setV− := {v ∈ V(G) | σ(v) = −}, and the subgraphG− of G induced by the
vertices inV− is connected.

For the reverse search method we define a directed graphG as follows (in the language of
the original reference [AF96], the directed edges ofG define a local search function): The
vertices ofG are the weak acycloidal signatures ofG; there is for every weak acycloidal
signatureσ with V− 6= ∅ exactly one directed edge(σ → τ) ∈ E(G), whereτ is defined
as follows: LetV− be defined byσ , and letu ∈ V− be the smallest vertex such that the
subgraph ofG induced byV− \ {u} remains connected (u obviously exists); then letτ
be the signature withτ(w) = σ(w) for w ∈ V(G) \ {v, v} andτ(v) = τ(v) = 0 (then
τ is a weak acycloidal signature). There is a unique sink inG, namely the signature with
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σ(v) = 0 for all v ∈ V(G), and every vertex inG is connected to the sink. The search
starts with the sink ofG and exploitsG by traversing the edges in reversed direction: By
this all weak acycloidal signatures ofG can be found without repetition. A description of
the algorithm WEAKACYCLOIDAL SIGNATURESREVERSESEARCH is given in Pseudo-
Code 4.1. Note that (different from the simple presentation here) it is not necessary in
the reverse search method to store the output list (here: inW); furthermore the method is
parallelizable.

Input: The tope graphG of an oriented matroid.
Output:A list W of all weak acycloidal signatures ofG.

begin WEAKACYCLOIDAL SIGNATURESREVERSESEARCH(G);
determine all antipodes inG;
let σ be the signature withσ(v) = 0 for all v ∈ V(G);
W := {σ }; Wnew := {σ };
while Wnew 6= ∅ do

take anyτ ∈ Wnew and removeτ from Wnew;
for all v ∈ V(G) with τ(v) = 0 do

if there is no{v,w} ∈ E(G) with σ(w) = + orw = v and
there is{v,w} ∈ E(G) with σ(w) = − then

σ := τ ; σ(v) := −; σ(v) := +;
determineV− from σ ;
find the smallestu ∈ V− such that

the subgraph induced byV− \ {u} is connected;
if u = v then W := W ∪ {σ }; Wnew := Wnew∪ {σ } endif

endif
endfor

endwhile;
return W

end WEAKACYCLOIDAL SIGNATURESREVERSESEARCH.

Pseudo-Code 4.1: Algorithm WEAKACYCLOIDAL SIGNATURESREVERSESEARCH

4.3.1 Proposition Algorithm WEAKACYCLOIDAL SIGNATURESREVERSESEARCH de-
termines the set of all weak acycloidal signatures of G in time of at most O(` · f 2

d fd−1),
where ` is the number of weak acycloidal signatures of G and fd = |V(G)| and
fd−1 = |E(G)|.
Proof Note that every weak acycloidal signature ofG is added exactly once toWnew, and
for every graphG it can be tested in timeO(|E(G)|) whetherG is connected.
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4.4 Reduction of Multiple Extension Using Isomorphic
Signatures

In this section we discuss a method for the generation of weak acycloidal localizations
which is similar to the method of the previous section. The difference is that we try to re-
duce multiple generation of isomorphic extensions at an early stage. The key observation
used in the following is:

4.4.1 Lemma Two localizationsσ andτ of a tope graph G lead to isomorphic extensions
if there is a graph automorphism g∈ Aut(G) such thatσ = τg, i.e.,σ(v) = τ(g(v)) for
all v ∈ V(G).

Proof The claim is a straightforward implication of the fact that the isomorphism class of
an oriented matroid is determined by its tope graph (see Corollary 1.4.2 and the discussion
in Section 4.1).

4.4.2 Definition Two signaturesσ, τ : V(G) → {−,+, 0} of a graphG are callediso-
morphicif there exists a graph automorphismg ∈ Aut(G) such thatσ = τg.

A direct application of isomorphic signatures is a more efficient isomorphism checking
for a set of extended tope graphs. Instead of testing all extended tope graphs against each
other (e.g., using a method as described at the end of Section 4.1), the localizations (or
weak acycloidal localizations) are tested first for being isomorphic signatures. Practically
all automorphisms ofG can be computed in advance which makes it very fast to reduce a
list of signatures such that no two remaining signatures are isomorphic. Note that testing
for isomorphic signatures is not sufficient for testing for isomorphic extensions: there
are non-isomorphic localizations of some tope graphs which lead to isomorphic single
element extensions.

We present in the following a variant of the algorithm WEAKACYCLOIDAL SIGNATURES-
REVERSESEARCH which generates weak acycloidal signatures only up to isomorphism
(in the sense of Definition 4.4.2), i.e., exactly one representative of each isomorphism
class is returned from the list of all weak acycloidal signatures. This new algorithm
WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISMdoes not use reverse search, but
still can be more efficient than the reverse search method as checking for isomorphic
signatures will avoid the generation of many subtrees in the search tree.

As before, the generation of signatures starts withσ : V(G) → 0, i.e.,V− = ∅, and then
augmentsV− by adding single vertices, but now not only with “minimal” vertices as in the
reverse search method. We say that a signatureσ is anaugmentationof a weak acycloidal
signatureτ w.r.t. v ∈ V(G) if σ is a weak acycloidal signature andσ(w) = τ(w) for
all w ∈ V(G) \ {v, v}, σ(v) = −, andτ(v) = 0. The augmentations are generated
with increasing cardinality|V−| = k, and for everyk only one representative of every
isomorphism class is kept for further augmentations. This leads to an algorithm WEAK-
ACYCLOIDAL SIGNATURESUPTOISOMORPHISM as described in Pseudo-Code 4.2; the
correctness follows from the following inductive argument:
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4.4.3 Lemma Let G be the tope graph of an oriented matroid. Consider the setWk of all
weak acycloidal signatures of G with|V−| = k for an integer k≥ 0. Let W∗

k be a set
containing exactly one representative of every isomorphism class ofWk. DefineW ′

k+1 as
the set of all augmentations of signatures inW∗

k , and letW∗
k+1 be a set containing exactly

one representative of every isomorphism class ofW ′
k+1. Then:W∗

k+1 contains a represen-
tative of every isomorphism class of the setWk+1 of all weak acycloidal signatures of G
with |V−| = k + 1.

Proof Let G, Wk, W∗
k , W ′

k+1, W∗
k+1, andWk+1 be as described above. Consider an ar-

bitrary σ ∈ Wk+1. We have to show that there exists a signatureσ ∗ ∈ W∗
k+1 which is

isomorphic toσ . Take anyτ ∈ Wk such thatσ is an augmentation ofτ (obviouslyτ
exists) w.r.t. to some vertexv ∈ V(G). Then there existsτ ∗ ∈ W∗

k such thatτ = τ ∗g for
someg ∈ Aut(G). As g is a graph automorphism and all properties of weak acycloidal
signatures are preserved under graph automorphisms, there isσ ′ ∈ W ′

k+1 which is aug-
mentation ofτ ∗ w.r.t. g(v), thereforeσ = σ ′g: σ andσ ′ are isomorphic. Since some
signatureσ ∗ ∈ W∗

k+1 is isomorphic toσ ′, the claim follows.

Input: A tope graphG of an oriented matroid.
Output:A list W∗ of all weak acycloidal signatures ofG up to isomorphism.

begin WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM(G);
let σ be the signature withσ(v) = 0 for all v ∈ V(G);
W∗ := {σ }; W∗

0 := {σ }; k := 0;
while W∗

k 6= ∅ do
W ′

k+1 := the set of all augmentations of signatures inW∗
k ;

W∗
k+1 := a set of representatives of the isomorphism classes ofW ′

k+1;
W∗ := W∗ ∪ W∗

k+1;
k := k + 1

endwhile;
return W∗

end WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM.

Pseudo-Code 4.2: Algorithm WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM

As stated above, we do not use reverse search for algorithm WEAKACYCLOIDAL SIGNA-
TURESUPTOISOMORPHISM, and the reason may be seen when considering the proof of
Lemma 4.4.3: In a reverse search method the augmenting vertices have to satisfy a min-
imal property, so in the inductive argument bothv andg(v) have to be minimal, which
is not true in general. Still it may be possible that WEAKACYCLOIDAL SIGNATURESUP-
TOISOMORPHISMcan be combined with the reverse search method (e.g., using a special
choice for the representatives of isomorphism classes).
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4.5 Reduction of Multiple Extension Using Maximal Lo-
calizations

The two previous sections presented two algorithms for the generation of weak acy-
cloidal localizations (up to isomorphism), namely WEAKACYCLOIDAL SIGNATURESRE-
VERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM. This sec-
tion discusses further improvements, mainly considering the multiple extension reduction
problem (see Section 3.3) for which we present a simple heuristic which is quite efficient
in practice.

In the incremental method described in Chapter 3 every oriented matroidM = (E,F )
is obtained as a single element extension of some deletion minor. UsuallyM has several
(up to|E|) non-isomorphic deletion minors, but only one is needed to generateM. In the
following we restrict our method to extensions of deletion minors with a minimal number
of topes; this will eliminate many but not all multiplicities in the method. Furthermore—
we will describe this in the following—it can be checked from tope graphs and signatures
whether the extension comes from a minor with a minimal number of topes, and this
criterion will reduce the amount of enumeration of weak acycloidal signatures.

Consider an oriented matroidM′ and a deletion minorM′\ f , which defines a localization
σ of the tope graphG of M′ \ f . The number of topes ofM′ \ f is minimal among all
deletion minors ofM′ if and only if the difference of the numbers of topes ofM′ \ f and
M′ is maximal:

4.5.1 Definition (Maximal Localization) Let G be the tope graph of an oriented matroid
M = (E,F ) andσ a weak acycloidal signature ofG which defines a single element
extensionT ′ (defined as in Section 4.2 for localizations) with tope graphG′ and new
elementf . We callσ a maximal localization of Gif |T ′| − |T ′ \ f | ≥ |T ′| − |T ′ \ e| for
all e ∈ E or, equivalently, if|T ′ \ f | ≤ |T ′ \ e| for all e ∈ E. If T ′ is the set of topes of
an oriented matroidM′ then the set of topes ofM′ \ e is T ′ \ e for e ∈ E ∪ f .

For the following characterization of maximal localizations remember the notion ofedge
classes(see Definition 1.2.7 and Lemma 1.2.8): LetG be the tope graph of an oriented
matroidM. The relation∼ defined on the set of edgesE(G) by {v,w} ∼ {v′, w′} if
dG(v

′, v) < dG(v
′, w) anddG(w

′, w) < dG(w
′, v) is an equivalence relation and leads to

a partition ofE(G) into edge classesEe which correspond to the elements in the ground
set ofM.

4.5.2 Lemma Let G be the tope graph of an oriented matroidM = (E,F ) and σ a
localization of G; as usual set V0 := {v ∈ V(G) | σ(v) = 0}. Thenσ is a maximal
localization of G if and only if for every edge class Ee ⊆ E(G)

(M) |V0| ≥ |Ee| + |Ee ∩ (V0 × V0)|.
Proof Let G, M = (E,F ), σ , T ′, G′, and f be as in the definition of maximal localiza-
tions. Consider the differences|T ′|−|T ′ \e| of number of topes fore ∈ E∪ f . Fore = f
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this difference obviously is|V0|. Fore 6= f the difference equals the number of edges in
the corresponding edge class(Ee)′ of the extended tope graphG′ or, equivalently, half of
the number of topesT ′ ∈ T ′ for which e T ′ ∈ T ′. This number can be computed from
half of the number of topesT ∈ T ′ \ f for which e T ∈ T ′ \ f , which is |Ee|, where
every such topeT counts twice ifT and e T are cut by f : the number of topes which
count twice is|Ee ∩ (V0 × V0)|. Hence|T ′| − |T ′ \ e| = |Ee| + |Ee ∩ (V0 × V0)| for
e ∈ E, which proves the claim.

If (M) is not valid for some weak acycloidal signatureσ , then (M) is also violated for every
augmentation ofσ : An augmentation will decrease|V0| by 2 and|Ee ∩ (V0 × V0)| by
at most 2 (note that edges incident to a common vertex belong to different edge classes).
Therefore signatures which violate (M) can be discarded in the generation algorithms, and
by this the amount of enumeration is reduced considerably.

We conclude this section with a remark on how the algorithms presented above may be
slightly improved when considering strong acycloidal signatures instead of weak acy-
cloidal signatures. We modify the two algorithms WEAKACYCLOIDAL SIGNATURESRE-
VERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM by adding
a simple test: When for a signatureσ there exist verticesv,w ∈ V− such that
dG	(v, w) > dG(v, w), then neitherσ nor any augmentations ofσ will satisfy (L3),
i.e., we will discard such signatures in the algorithms (for the augmentations observe that
dG(v, w) does not change anddG	(v, w) will not decrease sinceV	 becomes smaller as
V+ becomes larger).



The wheel is come full circle
KING LEAR (5,3)

Chapter 5

Cocircuit Graphs and Single Element
Extensions

This chapter presents methods based on cocircuit graphs of oriented matroids which solve
the single element extension problem of oriented matroids, discussed in the context of the
isomorphism class generation problem of oriented matroids. For the problem statements
and an overview of the approach see Chapter 3. In contrast to tope graphs, cocircuit
graphs do not characterize the isomorphism classes of oriented matroids. However, as a
result of Las Vergnas [LV78b], the single element extensions of an oriented matroid can
be characterized by the cocircuit graph together with a corresponding list of coline cycles.
This enables us to design efficient algorithmic solutions for the generation problem of
oriented matroids.

5.1 Cocircuit Graphs and Isomorphism Classes of Ori-
ented Matroids

We discuss in this section the connections between cocircuit graphs and isomorphism
classes of oriented matroids, similar as in Section 4.1 for tope graphs.

Let G be the cocircuit graph of an oriented matroidM, andL : V(G) → D a bijection
which associates vertices with cocircuits. In the language of graph labels (see Section 2.1)
we callL an OM-label ofG andL : V(G) → H defined byL(v) := L(v)0 for v ∈ V(G)
the M-label induced byL; remember thatH denotes the set of hyperplanes (here, of the
underlying matroidM). By Corollary 2.2.8,M is determined byG and the M-label
L up to reorientation, and clearly also every oriented matroid in the reorientation class
OC(M) hasG as its cocircuit graph with M-labelL. Furthermore, the discussion of
algorithm OMLABELFROMML ABEL (see Theorem 2.2.7) shows thatL is determined
up to reorientation byG andL, i.e., if L andL′ are two associating bijections fromV(G)
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to sets of cocircuitsD andD ′ of oriented matroidsM andM′, respectively, whereL and
L′ induce the same M-labelL, then there exists a reorientationρ such thatL = ρL′. As
before, we denote the concatenation of mapsρ, σ by ρσ (ρ afterσ ), and the inverse of a
bijectionτ by τ−1.

Instead of reorientation classes of oriented matroids, which we have considered above,
let us have a closer look at isomorphism classes. We may consider for a moment simple
oriented matroids only, i.e., we assume that there are no parallel elementse 6= f and
no loops, by this excluding trivial isomorphisms as we did in the discussion concerning
tope graphs (see Section 4.1). As introduced in Definition 4.1.1, let Aut(M) be the set
of automorphisms of a simple oriented matroidM = (E,F ), i.e., φ = ρπ with ρ a
reorientation andπ a permutation onE belongs to Aut(M) if F = {φ(X) | X ∈ F }.
Similar to tope graphs, there is a strong relation between Aut(M) and certain of the graph
automorphisms of the cocircuit graph ofG, as we discuss in the following (we refer to
[Asc00] for the notions of groups and group isomorphisms).

5.1.1 Definition (Cocircuit Graph Automorphism, Aut (G, L)) Let G be a cocircuit
graph of an oriented matroid with M-labelL. An automorphismg ∈ Aut(G) is called
a cocircuit graph automorphism of G and Lif there exists a permutationπ of the ground
setE (given as the union of all vertex labels defined byL) such thatLg = πL. The set
of all cocircuit graph automorphisms ofG andL is denoted by Aut(G, L).

5.1.2 Proposition LetM be a simple oriented matroid with cocircuit graph G and L the
M-label of G induced by an associating bijectionL : V(G) → D , whereD is the set of
cocircuits ofM. ThenAut(G, L) andAut(M) are isomorphic groups.

Proof Let M be a simple oriented matroid with cocircuit graphG and associating bijec-
tion L : V(G) → D . Let L be the M-label ofG induced byL.

• φg := LgL−1 ∈ Aut(M) for everyg ∈ Aut(G, L): Sinceg is a cocircuit graph
automorphism ofG and L there exist a permutationπ of the ground setE such
that Lg = πL. By Theorem 2.2.7,M is determined byG and the M-labelL
up to reorientation, i.e., there exists a reorientationρ such thatLg = ρπL. For
φ := ρπ ∈ Aut(M), Lg = φL, henceφg = LgL−1 = φ ∈ Aut(M).

• gφ := L−1φL ∈ Aut(G, L) for everyφ ∈ Aut(M): By definition of cocircuit
graphs, which is independent from oriented matroid isomorphisms,gφ ∈ Aut(G).
Furthermore,Lgφ = πL for φ = ρπ .

• g 7→ φg andφ 7→ gφ are inverse to each other, which follows by definition. Hence
these maps establish bijections between Aut(G, L) and Aut(M). Furthermore

φgh = LghL−1 = LgL−1LhL−1 = φgφh

for all g, h ∈ Aut(G, L), and

gφψ = L−1φψL = L−1φLL−1ψL = gφgψ

for all φ,ψ ∈ Aut(M).
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Open Problem: Aut(G) = Aut(G, L) for all cocircuit graphs G and for all M-labels L
of G?

If Aut(G) = Aut(G, L) for all cocircuit graphsG and all M-labelsL of G then Proposi-
tion 4.1.2 implies that for every oriented matroid the automorphism groups of the cocircuit
graph and of the tope graph are isomorphic. Furthermore, an answer to the above open
problem would also solve Open Problem 1 in Section 2.6.

The isomorphism class of an oriented matroid is represented by its M-labeled cocircuit
graph, where the M-label is considered up to isomorphism. This representation can be
used to test rather efficiently whether two oriented matroids are isomorphic (this is the
isomorphism checking problem of oriented matroids, see Section 3.3) as we discuss in
the following. LetG andG′ be cocircuit graphs of oriented matroids with M-labelsL and
L ′, respectively. IfG andG′ are defined by oriented matroids from the same isomorphism
class thenG andG′ are isomorphic and there exists a bijectiong : V(G) → V(G′) such
that L ′g = φL for some isomorphismφ on the ground sets; we call such ag a cocircuit
graph isomorphism from G to G′.

In the following algorithm,coline cyclesplay a major role. Coline cycles have been
introduced in Section 2.2 (Definition 2.2.4): LetM = (E,F ) be an oriented matroid with
rank(M) ≥ 2 andG the cocircuit graph ofM with associating bijectionL : V(G) → D .
For an edge{v,w} ∈ E(G) the setU := L(v)0∩L(w)0 ⊆ E is a coline of the underlying
matroidM, which is calledthe coline of{v,w}. By Lemma 2.2.3, the edges inE(G) of
colineU form a cyclec(U) in G which we callthe coline cycle of U.

The algorithmic idea is to find a cocircuit graph isomorphismg from G to G′ by enumer-
ation of a number of bijectionsV(G) → V(G′), using a backtracking technique on the
set of vertices ofG. Start with some vertexv ∈ V(G). For allv′ ∈ V(G′) try out whether
g(v) = v′ can be extended to a cocircuit graph isomorphismg from G to G′. For this fix
an arbitrary neighborw of v. For all neighborsw′ of v′ in G′ try out whetherg(w) = w′
can be extended to cocircuit graph isomorphismg from G to G′. For this observe thatL,
v, andw determine a coline cycle inG, and this has to correspond to the coline cycle de-
termined byL ′, v′, andw′ in G′: the choice ofg(v) andg(w) definesg(x) for all vertices
in the coline cycle. If a second neighboru of v is chosen, any choice ofg(u) in G′ fixes
a second coline cycle. Furthermore, there may be other coline cycles for which some of
the vertices have been considered already, and recursively this determines more and more
vertices: only a few vertices suffice and the bijectiong is determined. It is then trivial
to test whether there exists an isomorphismφ on the ground set such thatL ′g = φL.
Of course the enumeration process can be enhanced by adding some simple tests such as
whether the degree of verticesx andg(x) is equal, whether coline cycles inG andG′
have same length if necessary, or whether there exist isomorphismsφ for partially defined
g. Whenever such a test fails the current choice is skipped in the enumeration.

The efficiency of the above isomorphism test depends on the rank of the corresponding
oriented matroids: the higher the rank the slower the algorithm. The reason for this ob-
servation lies in the connectivity of coline cycles, which was studied in Section 2.3 for
uniform oriented matroids. For example, in the cocircuit graph of an oriented matroid
of rank 3 every coline cycle intersects every other, and it suffices in the above algorithm
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to consider three vertices (v and two neighbors), independent from the cardinality of the
ground set. In higher rank we have to consider a correspondingly higher number of ver-
tices.

5.2 Localizations and Cocircuit Graph Extensions

In this section we consider cocircuit graphs of oriented matroids and their relation to single
element extensions of oriented matroids. We have introduced in Section 3.4 localizations
of cocircuit graphs which represent single element extensions; we discuss this here in
more detail.

Consider two oriented matroidsM = (E,F ) andM′ = (E′,F ′) with cocircuit sets
D andD ′, respectively, whereE′ = E ∪ { f } for f 6∈ E. Furthermore assume that
M = M′ \ f , i.e.,M′ is a single element extension ofM. We assume for the following
that f is not a coloop ofM′: extensions by coloops will not be represented by localizations
of cocircuit graphs, hence all single element extensions considered in the following do not
increase the rank of the oriented matroid (note that by Lemma 3.3.2 these extensions are
not necessary for a complete generation of oriented matroids).

5.2.1 Lemma For every cocircuit X∈ D there exists a unique cocircuit X′ ∈ D ′ such
that X = X′ \ f .

Proof Let be X ∈ D . By definition of the deletion minor there exists someX′ ∈ F ′
such thatX = X′ \ f . Since f is not a coloop,r := rank(M) = rank(M′). By Corol-
lary 0.4.9 (iii), rankM(X) = rankM′(X′) or rankM(X) = rankM′(X′)+1, where the latter
would imply X′ = 0, which is not possible because ofX = X′ \ f 6= 0. Therefore,
X′ ∈ D ′. For the proof of the uniqueness considerY′ ∈ D ′ with X = Y′ \ f . Then
at least one ofX′ ⊆ Y′ or Y′ ⊆ X′ is valid, and by cocircuit axiom (C2) andX 6= 0,
X′ = Y′.

Associating the cocircuit graphG of M to D by L : V(G) → D , the above single
element extension defines a signatureσ : V(G) → {−,+, 0} on the vertex set ofG by
σ(v) := X′

f for v ∈ V(G), whereX′ ∈ D ′ is uniquely determined byX′
E = L(v) ∈ D

(see Lemma 5.2.1 above):

5.2.2 Definition (Localization of Cocircuit Graph) Let M = (E,F ) be an oriented
matroid with cocircuit graphG and associating bijectionL : V(G) → D . Let
M′ = (E ∪ f,F ′) be a single element extension ofM. This defines a signature
σ : V(G) → {−,+, 0} by σ(v) := X′

f for v ∈ V(G), where X′ ∈ D ′ such that
X′

E = L(v). We callσ the localization of G w.r.t.L and the single element extension
M → M′.

The set of cocircuits of the single element extension is determined by a localization as
follows:
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5.2.3 Lemma ([LV78b]) Let G be the cocircuit graph of an oriented matroidM associ-
ated to the set of cocircuitsD by L : V(G) → D . A localizationσ of G w.r.t.L and a
single element extensionM → M′ determines the extended cocircuit setD ′ as the set of
all sign vectors X′ ∈ {−,+, 0}E∪ f for which

• X′ \ f = L(v) and X′
f = σ(v) for some vertexv ∈ V(G), or

• X′ \ f = L(v) ◦ L(w) and X′
f = 0 for some edge{v,w} ∈ E(G) with

{σ(v), σ (w)} = {−,+},

where f 6∈ E is a new element.

Proof By Lemma 5.2.1 and the definition of the localizationσ , for everyv ∈ V(G) there
is a uniqueX′ ∈ D ′ such thatX′ \ f = L(v) and X′

f = σ(v). The claim states that
the remaining cocircuits inD ′ are the sign vectorsX′ on E ∪ f of the form X′ \ f =
L(v) ◦ L(w) and X′

f = 0 for some edge{v,w} ∈ E(G) with {σ(v), σ (w)} = {−,+}.
Consider anyX′ ∈ D ′ and setX = X′ \ f ∈ F . By assumption,f is not a coloop of
M′. Hence Corollary 0.4.9 (iii) implies that rankM(X) = rankM′(X′) or rankM(X) =
rankM′(X′) + 1. In the first caseX ∈ D , which was discussed above. In the latter
case spanM′(X0) 6= X′0 (see Corollary 0.4.9 (iii)), soX0 is a coline inM andM′, and
X′

f = 0. Furthermore, rankM(X) = 2 implies that there is an edge{v,w} ∈ E(G)
such thatX = L(v) ◦ L(w). Let V ′,W′ ∈ D ′ be determined byV ′ \ f = L(v) and
W′ \ f = L(w), thenV ′

f = σ(v) andW′
f = σ(w). Then X = L(v) ◦ L(w) implies

V ′ \ f ⊆ X′ \ f andW′ \ f ⊆ X′ \ f , so (C2) is satisfied only ifV ′
f 6= 0 andW′

f 6= 0.
If V ′

f = −W′
f then{σ(v), σ (w)} = {−,+}, what we claimed. We show thatV ′

f = W′
f

leads to a contradiction. AssumeV ′
f = W′

f 6= 0. Apply cocircuit elimination (C3) to
V ′,−W′ ∈ D ′, and f : there existsZ′ ∈ D ′ such thatZ′

f = 0 andZ′
g ∈ {V ′

g,−W′
g, 0}

for all g ∈ E ∪ f . HenceZ′ ⊆ X′, and by (C2)Z′ = X′ or Z′ = −X′. But V ′ 6= W′ and
V ′ 6= −W′ implies that there isg ∈ W′ \V ′, for which Z′

g 6= X′
g, and there isg ∈ V ′ \W′,

for which Z′
g 6= −X′

g. This proves thatV ′
f = W′

f 6= 0 is not possible.

The rank of the extended oriented matroidM′ is the same as the rank ofM (extensions
of coloops are excluded by assumption). Ifσ(v) = 0 for all v ∈ V(G) then f is a loop of
M′. If M is a simple oriented matroid, thenM′ is also simple unless

• σ(v) = 0 for all v ∈ V(G) or

• there existse ∈ E such thatσ(v) = L(v)e for all v ∈ V(G) or

• there existse ∈ E such thatσ(v) = −L(v)e for all v ∈ V(G).

The cocircuit graph of the single element extensionM′ is determined byD ′, as any set
of cocircuits determines the corresponding cocircuit graph. We cannot determine the
cocircuit graphG′ of the single element extension fromG and a localizationσ , as we do
not know between which vertices ofG′ the edges corresponding to the new colines have to



122 COCIRCUIT GRAPHS AND SINGLE ELEMENT EXTENSIONS

be placed. So we will first compute the single element extension (i.e., the set of cocircuits
D ′) and then the cocircuit graphG′. We briefly describe an algorithm which computes the
cocircuit graphG′ for a given set of cocircuitsD ′ ⊆ {−,+, 0}E in O(( f ′

0)
3n′) elementary

arithmetic steps as follows, wheref ′
0 = |D ′| andn′ = |E′| (the same algorithms has

already been described in the proof of Theorem 2.5.1): The vertex set ofG′ is a setV(G′)
associated by a bijectionL′ to D ′. For every vertexv ∈ V(G′) consider the set

S(v) := {(L′(v) ◦ L′(w))0 ⊆ E′ |w ∈ V(G′) \ v such thatD(L′(v),L′(w)) = ∅},
then{v,w} ⊆ V(G′) is an edge ofG′ if and only if (L′(v) ◦ L′(w))0 is maximal inS(v).

The vertex setV(G) of a cocircuit graphG is partitioned by a signatureσ into V−, V+,
V0, whereVs := {v ∈ V(G) | σ(v) = s} for s ∈ {−,+, 0}; let G− andG+ denote the
subgraphs ofG induced byV− andV+, respectively (we have introduced this notation
already for tope graphs in Section 4.2).

For the following discussion the notion of coline cycles becomes important again (coline
cycles have been introduced in Section 2.2, see Definition 2.2.4; we have used coline
cycles already in the previous section).

The following characterization of localizations of cocircuit graphs will be highly impor-
tant for the design of efficient methods for the generation of oriented matroids.

5.2.4 Theorem (Las Vergnas [LV78b])Let G be the cocircuit graph of an oriented
matroid M with rank(M) ≥ 2, given with the set of all coline cycles of G, and let
σ : V(G) → {−,+, 0} be a signature of G. Thenσ is a localization of G w.r.t.L and
some single element extensionM → M′ if and only if for every coline cycle c in G one
of the following is valid:

(I) σ(v) = 0 for every vertexv in c.

(II) There are two verticesv andv′ in c withσ(v) = σ(v′) = 0 such thatv andv′ divide
c into two paths c− and c+ of the same length which connectv andv′, and, for every
vertexw in c different fromv andv′, σ(w) = − if w is in c− andσ(w) = + if w is
in c+.

(III) Same as(II) except thatσ(v) = − andσ(v′) = +.

We will refer to I, II, III as the three possibletypesof a coline cycle (see Figure 5.1 for an
illustration).
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Figure 5.1: The three possible types of a coline cycle
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The following proof follows [LV78b]; our proof also explicitly shows that the zero sup-
ports of the extended sign vectors form a set of hyperplanes of a matroid, which is a result
Crapo [Cra65].

Proof of Theorem 5.2.4 From the discussion of oriented matroids of rank 2 (see Corol-
lary 1.4.4 and Lemma 2.2.1) it is clear that on every coline cycle the induced signature
has to satisfy one of I, II, and III. We show in the following that this is sufficient, i.e.,
that then the extended set of sign vectorsD ′ satisfies the (modular) cocircuit axioms (see
Proposition 0.6.9).
Assume thatσ is a signature which satisfies I, II, or III for every coline cycle. We define
a setD ′ by σ andL as in Lemma 5.2.3, wheref 6∈ E is the new element. LetL be the
M-label induced byL, i.e., L(v) := L(v)0 for all verticesv ∈ V(G). We first prove that
the set of zero supports ofD ′ is a set of hyperplanesH ′ of a matroidM ′. By definition of
D ′ and because of the assumptions on the type of every coline cycle,H ′ is determined as
the set of setsH ′ ⊆ E ∪ f for which

• H ′ = L(v) ∪ f for v ∈ V0,

• H ′ = L(v) for v ∈ V(G) \ V0, or

• H ′ = (L(v)∩ L(w))∪ f for an edge{v,w} ∈ E(G) with {σ(v), σ (w)} = {−,+},

For (H1) considerX′,Y′ ∈ H ′ with X′ ⊆ Y′. Set X := X′ \ f and Y := Y′ \ f .
Obviously X ⊆ Y. If X $ Y then X = L(v) ∩ L(w) $ L(u) = Y for some vertices
v,w, u ∈ V(G) where X is a coline inM. Hence f ∈ X′ ⊆ Y′. By assumption
{σ(v), σ (w)} = {−,+}, i.e., the coline cycle ofX has type III, but since the vertexu
is on the coline cycle ofX, f 6∈ Y′, a contradiction. IfX = Y then eitherX = Y is a
coline and hencef ∈ X′ = Y′, or X = Y = L(v) for some vertexv ∈ V(G), hence by
symmetry (C2) ofL and the symmetry ofσ , X′ = Y′. For (H2) considerX′,Y′ ∈ H ′
with X′ 6= Y′ ande ∈ (E ∪ f )\ (X′ ∪Y′). We have to show that there existsZ ∈ H ′ such
that R′ := (X′ ∩ Y′) ∪ e ⊆ Z′. SetX := X′ \ f , Y := Y′ \ f , andR := R′ \ f . If e 6= f
thenR = (X ∩ Y)∪ e, otherwiseR = X ∩ Y. If spanM(R) is not a hyperplane inM then
consider any colineU ∈ M such thatR ⊆ U . By assumption on the type of the coline
cycle ofU and by the definition ofD ′ there existsZ′ ∈ H ′ such thatU ⊆ Z′ and f ∈ Z′,
henceR′ ⊆ Z′. If spanM(R) is a hyperplane inM then spanM(X ∩ Y) = X ∩ Y is a
coline inM (note thatX′ 6= Y′ and (H1) implyX 6= Y), ande 6= f . By definition there
existsZ′ ∈ H ′ such that spanM(R) ⊆ Z′, soR ⊆ Z′. If f ∈ X′ ∩ Y′ then by assumption
the coline cycle ofX ∩ Y has type I, hence alsof ∈ Z′.
It is not difficult to see that (C0) to (C2) are valid by definition and by the symmetry
of σ w.r.t. to antipodes inG. It remains to check modular cocircuit elimination (C3m).
Let X′,Y′ ∈ D ′ be modular in the matroidM ′, i.e.,U ′ := X′0 ∩ Y′0 is a coline inM ′.
Let e ∈ D(X′,Y′). We have to show that there existsZ′ ∈ D ′ such thatZ′

e = 0 and
Z′

g ∈ {X′
g,Y

′
g, 0} for all g ∈ E ∪ f . Let X,Y ∈ F be defined byX := X′ \ f and

Y := Y′ \ f , and setU := U ′ \ f .

• Assume spanM ′(U) = U ′. This implies rankM(U) = rankM ′(U ′) (see Corol-
lary 0.4.8 (iii)), henceU is a coline inM. Note thatU ′ ∪ e spans a hyperplane
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in M ′, hence there is a sign vectorZ′ ∈ D ′ such thatU ′ ∪e ⊆ Z′0, and by (C2) this
Z′ is determined up to negative. SetZ := Z′ \ f , thenU ⊆ Z0. Consider the coline
cycle c(U) of U in the cocircuit graphG of M. Denote byx, y, z, z the vertices
or edges inc(U) that correspond toX,Y, Z,−Z. The contraction ofM to U is an
oriented matroid of rank 2 whose cocircuit graph corresponds to the subgraph of
c(U) in G. From the characterizations of rank 2 oriented matroids (Corollary 1.4.4)
it follows that z or z is on the shorter path fromx to y (note thatX 6= −Y be-
cause of the modularity ofX′ andY′), and in the latter case we replace−Z by Z.
Sinceσ observes one of the three possible types onc(U), in any caseZ′

e = 0 and
Z′

g ∈ {X′
g,Y

′
g, 0} for all g ∈ E ∪ f .

• Assume spanM ′(U) 6= U ′. Then f ∈ U ′, i.e., X′
f = Y′

f = 0 and f 6= e, and by

(C2) for X′,Y′ ∈ D ′ follows that there existg ∈ Y \ X = X0 \ Y0. By the strong
hyperplane exchange axiom applied forX′0, Y′0, e, andg, there exists a hyperplane
in M ′ which containsU ′ ande but notg; because of the modularity ofX′ andY′
this hyperplane is the span ofU ′ ∪ e in M ′. Hence there existsZ′ ∈ D ′ such that
U ′ ∪ e ⊆ Z′0 andZ′

g 6= 0. Because of (C2),Z′ is determined up to negative, and
we chooseZ′ such thatZ′

g = Y′
g. Similar as forg, there existsh ∈ X \Y = Y0\ X0

such thatZ′
h 6= 0. If Z′

i ∈ {X′
i ,Y

′
i , 0} for all i ∈ E, we are done (note that

X′
f = Y′

f = Z′
f = 0). Otherwise leti ∈ E be such thatZ′

i 6∈ {X′
i ,Y

′
i , 0}. As

spanM ′(U) 6= U ′ implies rankM ′(U) = rankM ′(U ′) − 1, the contraction minor
M ′/U is a matroid of rank 3. Furthermore, by the choice ofe, g, h, andi , also its
deletion minorM̃ := (M ′/U) \ (E \ {e, f, g, h, i }) is of rank 3. The orientationD ′
induces an orientation of̃M. The analysis of all possible orientations of matroids of
rank 3 on ground sets of 5 elements shows that no case supports all assumptions.

It is not difficult to see that a single element extension of a uniform oriented matroid is
again uniform if and only if the corresponding localization of the cocircuit graph satisfies
V0 = ∅, i.e., every coline cycle has type III.

We conclude this section with the following lemma which will be important for some of
the algorithms in the next section:

5.2.5 Lemma Let G be the cocircuit graph of some oriented matroid and letσ : V(G) →
{−,+, 0} be a localization of G w.r.t. a given associating bijectionL and some single
element extension. Then G+ (and also G−) is a connected subgraph of G.

For the proof of the lemma we need Proposition 2.2.5 which states that for any elemente
the subgraph induced by the verticesv for whichL(v)e = + is connected.

Proof of Lemma 5.2.5 Let G be the cocircuit graph of an oriented matroidM = (E,F )
with associating bijectionL : V(G) → D . Let σ : V(G) → {−,+, 0} be a localization
of G w.r.t.L and some single element extension. The localizationσ andL define a single
element extensionM′ = (E ∪ f,F ′) with new elementf as stated in Lemma 5.2.3.
Consider the cocircuit graphG′ of M′ with associating bijectionL′ : V(G′) → D ′. Let
V+

f denote the set of vertices withL′(v) f = +. For any two verticesv,w ∈ V+ =
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{v ∈ V(G) | σ(v) = +} there are uniquely determined verticesv′, w′ ∈ V(G′) such
that L′(v′) \ f = L(v) andL′(w′) \ f = L(w), and thenL′(v′) f = L′(w′) f = +,
i.e.,v′, w′ ∈ V+

f . By Proposition 2.2.5, the subgraph ofG′ induced byV+
f is connected.

Hence there exists a pathv′ = u′
0, . . . , u

′
k = w′ in G′ connectingv′ andw′ with u′

i ∈ V+
f

for i ∈ {0, . . . , k}. For everyu′
i there is a uniqueui ∈ V(G) such thatL(ui ) = L′(u′

i )\ f ,
and thenσ(ui ) = +; furthermore{u′

i−1, u
′
i } ∈ E(G′) implies {ui−1, ui } ∈ E(G) for

i ∈ {1, . . . , k}: v,w are connected withinV+, henceG+ is connected. The connectedness
of G− follows by symmetry.

5.2.6 Definition (Weak Localization) Let G be the cocircuit graph of an oriented ma-
troid M with associating bijectionL : V(G) → D . For every vertexv ∈ V(G) we call
the vertexv determined byL(v) = −L(v) the antipode ofv. We call a signatureσ of G
a weak localization of Gif σ(v) = −σ(v) for every vertexv ∈ V(G) andG+ (and by
symmetry alsoG−) is connected.

It is clear from Theorem 5.2.4 and Lemma 5.2.5 that every localization of a cocircuit
graph is also a weak localization, but not every weak localization is a localization (this
fails already for rank 2 and a ground set of 3 elements).

5.3 Two Methods for the Generation of Localizations

This section introduces two methods for the generation of localizations of cocircuit
graphs. The methods, which are similar to those presented for tope graphs in Sections 4.3
and 4.4, can be used as part of an incremental method as described in Section 3.3.

Note that for the generation of localizations of a cocircuit graph we need more than the
cocircuit graph, namely also an associating bijection. This has not been the case in the
methods using tope graphs.

The main idea of the following two methods is to generate first all weak localizations and
then to test these signatures for being localizations (e.g., using the characterization of The-
orem 5.2.4). As for the generation of weak acycloidal signatures in tope graphs the prop-
erty that the subgraphsG+ andG− are connected graphs is essential. This leads to algo-
rithms WEAKLOCALIZATIONSREVERSESEARCH and WEAKLOCALIZATIONSUPTO-
ISOMORPHISM which are similar to the algorithms WEAKACYCLOIDAL SIGNATURES-
REVERSESEARCH and WEAKACYCLOIDAL SIGNATURESUPTOISOMORPHISM which
are discussed in Sections 4.3 and 4.4. Due to the similarity, we omit a detailed description.

We consider some improvements of the two methods, similar to those presented in Sec-
tion 4.5. LetM be an oriented matroid with cocircuit graphG and associating bijection
L, andσ a localization ofG w.r.t. L and a single element extensionM → M′.

We callσ a maximal localization of G w.r.t.L if the difference|D ′| − |D | of the number
of cocircuits inM′ andM is maximal among the differences between|D ′| and the number
of cocircuits of any deletion minorM′ \ e. Maximal localizations are characterized by
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G andL (of course, sinceL gives full information aboutM), but we cannot use non-
maximality of localizations as a stopping criterion (as in the case of tope graphs). In fact,
practically we only use maximal localizations after the generation of weak localizations
and after omitting signatures which are not localizations in order to reduce the amount of
isomorphism checking.

Another improving step may be to test for every signature in the algorithms WEAK-
LOCALIZATIONSREVERSESEARCH and WEAKLOCALIZATIONSUPTOISOMORPHISM

whether the signature violates the coline types in a way such that also all augmentations
will be violating (as introduced for tope graphs, an augmentation of a signatureσ is a
signatureτ such thatτ(v) = σ(v) for all σ(v) 6= 0). For an example see Figure 5.2;
any augmentation does not change the nonzero signs which already violate all of the three
coline types I, II, and III.

−

+
−+

−
+

Figure 5.2: Infeasable assignment of a coline cycle

The computational experience shows that the methods introduced in this section as well
as the analogous methods for tope graphs work for smaller instances satisfactory and lead
to the same results, but the larger the instances the larger is the difference between the
number of weak localizations and localizations, which then makes the methods rather in-
efficient. Cocircuit graphs are smaller than tope graphs (cf. Corollary 1.5.2), which makes
the cocircuit graph algorithms running somewhat faster. The fact that the algorithms do
not use a good characterization of localizations may explain why they are rather slow, at
least compared to the method presented in the following section.

5.4 Backtracking Method for the Generation of Localiza-
tions

The characterization of localizations of cocircuit graphs as formulated in Theorem 5.2.4
offers a more structured approach to localizations than it was possible for tope graphs or
used in the methods of the previous section. We may try to assign to every coline cycle
in a given cocircuit graph a sign pattern of type I, II, or III in a consistent way. We will
do this using a simple backtracking method, which leads to a third algorithm LOCALIZA -
TIONSPATTERNBACKTRACK as discussed in the following which is much more efficient
in practice than the methods presented so far.

Let D be a set of cocircuits of an oriented matroidM = (E,F ). As described in Sec-
tion 5.2, we can compute inO( f 3

0 n) elementary arithmetic steps its cocircuit graphG
and an associating bijectionL : V(G) → D , wheren := |E| and f0 = |D | = V(G).
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Then compute the set{c1, . . . , cs} of all coline cycles ofG, where every cycleci is repre-
sented as a list of vertices{vi

1, . . . , v
i
mi

} which is ordered such that{vi
j −1, v

i
j } is an edge

for all j ∈ {2, . . . ,mi }, wheremi is the length of coline cycleci . With f1 = |E(G)|, this
computation costs at mostO( f0 f1n), i.e., not more thanO( f 3

0 n) (note that
∑

mi = f1
ands ≤ f1 ≤ f 2

0 ). For a signatureσ of G let σi denote the restriction ofσ to the vertex
set of cycleci . Theorem 5.2.4 implies thatσi has one of three types, more precisely one
of 2mi + 1 patterns, which we encode in a numberpi ∈ {0, . . . , 2mi } as follows (set
vi

mi +1 := vi
1):

pi = 0 σi is of type I

pi = 2 j for j ∈ {1, . . . ,mi } σi is of type II andσ(vi
j ) = 0, σ(vi

j +1) = +
pi = 2 j − 1 for j ∈ {1, . . . ,mi } σi is of type III andσ(vi

j ) = −, σ(vi
j +1) = +

Our algorithm will set allpi (and by thisσi ) for i ∈ {1, . . . , s} in a consistent way, i.e.,
such that for every vertexv ∈ V(G) the sign ofσi (v) is the same for all coline cyclesci

which containv. Assume that for a set of indicesI ⊆ {1, . . . , s} we have chosenpi for all
i ∈ I (in a consistent way), and it remains to choosepi for i 6∈ I . Obviously, the patterns
pi for i ∈ I restrict the possibilities for the remaining choices. Consideri 6∈ I : For some
of the vertices in the coline cycleci the signs may be determined by previously fixed
patterns of coline cycles which intersectci , and therefore only some (or possibly none)
of the 2mi + 1 patterns remain. We call these directly computable restrictionsthe first-
order consequences implied by pi for i ∈ I . These first-order consequences will usually
determine the signs of vertices on cyclesci with i 6∈ I which were not set before, and these
new signs imply further restrictions for thepi for i 6∈ I , and so on: The computation of
implied restrictions can be continued recursively and will finally lead to what we callthe
second-order consequences implied by pi for i ∈ I (second-order consequences have
been introduced by Bokowski, see [BGdO00]). Although the second-order consequences
reduce the amount of enumeration, we simplify the following discussion of our algorithm
by restricting to first-order consequences; our method will be such that the improvement
by second-order consequences is not of importance in practice.

We describe in the following an algorithm LOCALIZATIONSPATTERNBACKTRACK

which serves as a concrete variant of our method. This algorithm is quite simple and rather
efficient, but still it may be improved (e.g., using second-order consequences or more so-
phisticated data structures). Let us assume that all coline cyclesci of the given cocircuit
graphG have been computed as described above. The goal is to enumerate all localiza-
tions of G by enumerating all consistent choices(p1, . . . , ps) with pi ∈ {0, . . . , 2mi }.
ConsiderI ⊆ {1, . . . , s} as a set of indices for which the correspondingpi have been
fixed (in the beginningI = ∅). The first-order consequences implied bypi for i ∈ I
restrict the possible choices of everypi with i 6∈ I to one of the following cases:

(P1) All 2mi + 1 possibilities.

(P2) A range[p, p′] ⊆ {1, . . . , 2mi } of possibilities forp, p′ ∈ {1, . . . , 2mi } with p, p′
odd, where[p, p′] := {p, . . . , p′} if p ≤ p′ and[p, p′] := {p′, . . . , 2mi , 1, . . . p}
otherwise.
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(P3) The choice is one of 0, 2j , 2 j + mi for j ∈ {1, . . . ,mi /2}.
(P4) The only choice is 2j for j ∈ {1, . . . ,mi }.
(P5) The only choice ispi = 0.

(P6) There is no feasible choice.

An important element in the following algorithm is the augmentation of the setI of fixed
patterns by an additional elementi ∗; then the information of the possible choices has to
be updated. For this a matrixA of sizes × s is computed (once at the beginning of the
algorithm, which will cost at mostO(ns2) operations) such that

Aii ∗ =
{

0 if ci andci ∗ have no vertex in common ori = i ∗,
j > 0 such thatvi

j is onci ∗ otherwise.

We call A a coline adjacency matrix. It is not difficult to see that then an update of the
first-order consequences fromI to I ∪ {i ∗} needs for everyi ∈ {1, . . . , s} only a constant
number of operations. It can be seen that for the enumeration of coline cycle patterns
a coline adjacency matrixA and a list giving all the lengthsmi of the coline cycles are
sufficient (we do not need an explicit description of the cocircuit graph or the coline
cycles).

It remains to discuss the order in which we fix the patternspi , and this is of great im-
portance w.r.t. the efficiency of the algorithm. IfI = ∅ we choose anyi ∈ {1, . . . , s}
with maximalmi (i.e., a longest cycle). If∅ 6= I $ {1, . . . , s}, let I ∗ denote the set of
all i 6∈ I for which ci intersects at least one coline cycle fromI (I ∗ is not empty, see
Lemma 2.2.6); then we choosei ∗ ∈ I ∗ such thatpi ∗ has a minimal number of possible
choices w.r.t. the first-order consequences implied byI . We call this adynamic order-
ing. This finally leads to the algorithm LOCALIZATIONSPATTERNBACKTRACK which is
summarized in Pseudo-Code 5.1.

The algorithm LOCALIZATIONSPATTERNBACKTRACK is much more efficient than all
the previous algorithms for the generation of oriented matroids described in this thesis,
which is also observed from the performance of implementations. Considering only first-
order consequences instead of second-order consequences did not cause many infeasible
situations in the backtracking method; e.g., for|E| ≤ 6 and any rank the number of
infeasible cases was always less than 10% of the number of localizations, and for larger
instances this also increases only a little. For more computational results see Chapter 6.

Whereas the first four algorithms which have been described in Sections 4.3, 4.4, and 5.3
do not seem to be similar to previously known methods for the generation of oriented ma-
troids, the algorithm LOCALIZATIONSPATTERNBACKTRACK turned out to be related to
an algorithm of Bokowski and Guedes de Oliveira [BGdO00]. At first, the two algorithms
appear to be rather different. While we use cocircuits and cocircuit graphs, the oriented
matroid representation in [BGdO00] is based on the chirotope axioms and concentrates
on uniform oriented matroids. This leads to different data structures in the algorithms
(see below). Nevertheless, the two algorithms are closely related when interpreted as al-
gorithms in dual settings, namely hyperplane arrangements vs. point configurations: Lo-
calizations of cocircuit graphs correspond to hyperline configurations in [BGdO00] as we



5.4 BACKTRACKING METHOD FOR THEGENERATION OFLOCALIZATIONS 129

Global Data: s, m1, . . . ,ms, a coline adjacency matrixA (see above).
Input: I ⊆ {1, . . . , s}; p̃1, . . . , p̃s such thatp̃i = pi for i ∈ I and p̃i for
i 6∈ I contains the information which patterns are possible w.r.t. the first-order
consequences implied bypi for i ∈ I .
Output: is generated whenever a new localization is found.

begin LOCALIZATIONSPATTERNBACKTRACK(I ; p̃1, . . . , p̃s);
if somep̃i indicates that no choicepi is feasiblethen return
else if I = {1, . . . , s} then

output the localization defined bỹp1, . . . , p̃s;
return

else if I = ∅ then choosei ∗ such thatmi ∗ is maximal
else

I ∗ := {i 6∈ I | Aii ′ > 0 for somei ′ ∈ I };
choosei ∗ ∈ I ∗ such thatp̃i ∗ has a minimal number of possible choices

endif;
for all possible choices ofpi ∗ do

LOCALIZATIONSPATTERNBACKTRACK(I ∪ {i ∗}; p̃1, . . . , p̃s),
where p̃1, . . . , p̃s are updated w.r.t. choicepi ∗ ;

endfor;
return

end LOCALIZATIONSPATTERNBACKTRACK.

Pseudo-Code 5.1: Algorithm LOCALIZATIONSPATTERNBACKTRACK

can consider (halves of) coline cycles and hyperlines (or lines) as being equivalent under
dualization. Then patterns of coline cycles as introduced for algorithm LOCALIZATIONS-
PATTERNBACKTRACK and gap positions as used in the algorithm in [BGdO00] coincide.
Also the basic idea of how the patterns (or gap positions) are fixed is similar.

Comparison of the algorithms shows that both are based on similar algorithmic concepts,
however there are also some important differences. In particular, while the algorithm in
[BGdO00] stores both the set of colines and that of bases signatures, our algorithm carries
the colines only. Furthermore, the colines are represented by their bases in [BGdO00] that
are not unique in non-uniform oriented matroids, our algorithm stores the colines directly.
For generating non-uniform oriented matroids, these differences can be substantial. Our
algorithm LOCALIZATIONSPATTERNBACKTRACK is designed for the general case and
the implementation is straightforward, independent from rank or uniformity. Furthermore
we can, if we want, easily restrict to the uniform case: We simply do not consider patterns
of type I or II, i.e., the only change in algorithm LOCALIZATIONSPATTERNBACKTRACK

is that only odd values ofpi are allowed for patterns.

Another remarkable difference is the order in which the fixing of the patterns (or gap posi-
tions) is done: The algorithm in [BGdO00] uses a fixed order of hyperlines, our algorithm
chooses the next colinei ∗ 6∈ I according to the first-order consequences of the choices
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in I , by this reducing the amount of enumeration and the number of infeasibilities. This
is possibly the reason why the use of second-order consequences was a crucial improve-
ment from earlier algorithms in [BGdO00]. We agree that second-order consequences are
important as they reduce infeasible cases; in the case of rank 3 oriented matroids they
even eliminate all infeasibilities (which was already noted in [BGdO00]). However, our
experience shows that also without second-order consequences the performance can be
good because the dynamic ordering tends to eliminate infeasible cases efficiently.

A fair comparison of the efficiency of the two algorithms is very difficult as the implemen-
tations are too different to be compared directly. However, more detailed comparisons of
the oriented matroid generation algorithms will be a basis for further investigations and
improvements.
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How many be there of them?
HENRY IV (I:2,2)

Chapter 6

A Catalog of Oriented Matroids

6.1 Introduction

We present in the following the organization of a catalog of oriented matroids or, more
precisely, of the isomorphism classes of oriented matroids. For an overview of the prob-
lems of generating oriented matroids or isomorphism classes of oriented matroids see
Chapter 3.

The two main goals for the construction of a catalog of isomorphism classes of oriented
matroids isa natural ordering principleandan easily accessible data format.

When looking for ordering principles of oriented matroids up to isomorphism, one has
to consider representations and invariants of isomorphism classes. It is natural to restrict
representatives of isomorphism classes to simple oriented matroids, and we will do so for
the following. Invariants of isomorphism classes include the numbern of elements (of a
simple representative), the rankr , the big face lattice, the tope graph, and the cocircuit
graph. It is very natural to use as the first ordering principlen andr , i.e., isomorphism
classes are grouped together according ton and r . As introduced in Section 3.3, let
IC(n, r ) denote the set of all such isomorphism classes for givenn andr . We will consider
in the following IC(n, r ) as a list of representatives, where every representative is a simple
oriented matroid of rankr on ground setE = {1, . . . , n}.
The ordering principle inside IC(n, r ) is less clear. For practical reasons a linear order
of representatives in IC(n, r ) is desirable. Face lattices and graphs seem to lack a natural
total ordering principle themselves [RW98]. For example, if the number of cocircuits
(or topes) is the first order principle inside IC(n, r ), this will lead to a partial order only.
Adding second order principles etc. will not solve the problem unless there is a guarantee
that this implies a total order for alln andr . Also, the choice of invariants (and the order
in which they apply) seems to be rather arbitrary.

Instead of looking at invariants of one isomorphism class only, the relationship among
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the classes may lead to a natural ordering principle. The most natural relationship is the
one established by minors and extensions. Every isomorphism class has a certain set of
isomorphism classes of minors (or extensions), independent from the representation of
the classes. This might bring up the idea to order IC(n, r ) by looking at the set of minors
of every class and their relative ordering. It would allow a very natural ordering of iso-
morphism classes if the following question has an affirmative answer:Is an isomorphism
class determined by the set of isomorphism classes of its minors?However, the answer
is no, as can be seen easily from the fact that there are 4 isomorphism classes of uniform
oriented matroids in IC(6, 3) which all have the same (unique) uniform deletion minor in
IC(5, 3).

It seems that reasonable ordering principles will depend on the choice of some represen-
tation of the isomorphism class or on the choice of invariants which are arbitrary to some
extend. We present in the following one possibility of how to order the classes in IC(n, r ),
and in Section 6.3 we will discuss some properties which motivate our organization of the
catalog under the aspect of being natural and practical.

6.2 Organization of Catalog

This section explains the organization of the catalog of isomorphism classes of oriented
matroids as motivated in the previous section. On the most general level, the isomorphism
classes are grouped in lists IC(n, r ), where IC(n, r ) is a complete list of classes where
every class is represented by a simple oriented matroid on ground setE = {1, . . . , n} of
rankr := rank(M).

Let n andr be given. We have to decide

• how the representative of every class in IC(n, r ) is encoded,

• which oriented matroid from every isomorphism class is taken as its representative,
and

• in which order the isomorphism classes are listed inside IC(n, r ).

For theencodingof an oriented matroid we use the chirotope representation (see Defini-
tion 0.9.6). The chirotope is encoded as a list of

(n
r

)
signs in some canonical order of the

r -subsets ofE = {1, . . . , n}, i.e., the subsets ofE which contain exactlyr elements (we
will discuss the order in more detail below). Note that chirotopes are defined as a pair
{χ,−χ} of maps which are negatives of each other, and as a canonical way to chooseχ

or −χ we take the one which has+ as the first nonzero sign. The chirotope representation
is more compact than, e.g., a set of cocircuits (i.e., less memory is needed). Furthermore
all classes have an encoding of the same size, and there is only one sequence of signs (not
a list of sign vectors), which makes it easy to store many isomorphism classes in one file.
For the chirotope representation, we have to explain the ordering of the bases. We choose
the reverse lexicographic orderof the bases, where the elements in everyr -subset ofE
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are sorted from small to large. Note that usually the chirotope representation uses a lexi-
cographic order [BLVS+99]. Our choice is motivated by the fact that the bases of deletion
and contraction minors w.r.t. the last elementn are naturally grouped in the reverse lex-
icographic order (we explain this in more detail in Section 6.3, where we motivate our
choice further). See Table 6.1 for an example of lexicographic and reversed lexicographic
order forn = 5 andr = 3; the last elementn = 5 is marked in order to make the bases of
the corresponding minors visible.

Lexicographic Reverse Lexicographic
123 123
124 124
125 134
134 234
135 125
145 135
234 235
235 145
245 245
345 345

Table 6.1: Lexicographic and reverse lexicographic order of bases (n = 5, r = 3)

6.2.1 Definition (Encoding) Let M be an oriented matroid of rankr with ground set
E = {1, . . . , n}. We denote byχ(M) ∈ {−,+, 0}(nr) theencodingof M by the lexico-
graphically positive map in the chirotope ofM, where the signs are given according to
reverse lexicographically sortedr -subsets.

As therepresentativeof an isomorphism class we choose the oriented matroid for which
its chirotope encoding is lexicographically largest among all oriented matroids in the same
isomorphism class, where the signs are ordered as− < + < 0, which is motivated in the
next section.

6.2.2 Definition (Representative)Let M be an oriented matroid which belongs to some
isomorphism class in IC(n, r ). We denote by rep(M) the uniquely determined simple ori-
ented matroid on ground setE = {1, . . . , n} which is in IC(M) and for whichχ(rep(M))

is lexicographically maximal, where− < + < 0.

In order to find rep(M) for some given simple oriented matroidM one has potentially to
consider all permutations of{1, . . . , n} and all reorientations of the elements.

For theorder of the classesin IC(n, r ) we use an increasing lexicographic ordering of the
representatives, where again− < + < 0 as before. Table 6.2 shows the listing of the 17
isomorphism classes in IC(6, 3); ther -subsets are indicated on the top, so{1, 2, 3} is the
first triple, then{1, 2, 4}, etc.
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1 1 1 2 1 1 2 1 23 1 1 2 1 2 3 1 2 3 4
2 2 3 3 2 3 3 4 4 4 2 3 3 4 4 4 5 5 5 5

c 3 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6
1 + + + + + + + + + + + + + − + + − − + +
2 + + + + + + + + + + + + + + + + + + − −
3 + + + + + + + + + + + + + + + + + + + −
4 + + + + + + + + + + + + + + + + + + + +
5 0 + + + + + + + + + + + + + + − + − − −
6 0 + + + + + + + + + + + + + + + + + − −
7 0 + + + + + + + + + + + + + + + + + + +
8 0 + + + + + + + + + + + + + + + + + + 0
9 0 + + + + + + 0 + + + + + + + + + − − −

10 0 + + + + + + 0 + + + + + + + + + + − −
11 0 + + + + + + 0 + + + + + + + + + + + −
12 0 + + + + + + 0 + + + + + + + 0 + + − −
13 0 + + + + + + 0 + + + + + + + 0 + 0 − −
14 0 + + + + + + 0 + + + + + + 0 − + − − −
15 0 0 0 0+ + + + + + + + + + + + + + + +
16 0 0 0 0+ + + + + + + + + + + + 0 + + +
17 0 0 0 0 0 0 0 0 0 0+ + + + + + + + + +

Table 6.2: The 17 isomorphism classes in IC(6, 3)

6.2.3 Definition (IC(n, r, c)) Let M be an oriented matroid such that IC(M) belongs to
IC(n, r ). Let c ≥ 1 be the position of rep(M) in IC(n, r ) determined by the lexicograph-
ically increasing order of the chirotope encoding of the representatives in IC(n, r ). We
then write IC(n, r, c) for IC(M).

6.3 Properties of Catalog

We investigate some of the properties of the catalog which motivates the organization that
was presented in the previous section.

As we choose the order of the bases to be reverse lexicographic, the deletion minorM \ n
of an oriented matroidM, wheren ∈ E = {1, . . . , n} is the element with highest index,
can be easily obtained from the chirotope representationχ(M):

6.3.1 Lemma Let M = (E,F ) be a simple oriented matroid such that E= {1, . . . , n}
for some n. Set r:= rank(M).

(i) If n ∈ E is not a coloop then the first
(n−1

r

)
signs ofχ(M) are not all 0 and are

equal to the signs ofχ(M \ n) (in the same order).

(ii) If n ∈ E is a coloop then the first
(n−1

r

)
signs ofχ(M) are all 0, and the last

(n−1
r −1

)
signs ofχ(M) are equal to the signs ofχ(M \ n) (in the same order).
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Proof Consider first some basic facts about the reverse lexicographic ordering of the
r -subsets ofE. The first

(n−1
r

)
subsets do not containn and their order is the reverse

lexicographic order of the(r − 1)-subsets ofE. After these come the
(n−1
r −1

)
subsets that

containn, and the ordering of these sets (withn deleted) is the reverse lexicographic
ordering of the(r − 1)-subsets ofE \ n.
If n ∈ E is not a coloop then rankM(E \n) = rankM(E) = r , hence there exists a basisB
of M which does not containn and the corresponding sign (which is− or + by definition)
is one of the first

(n−1
r

)
signs inχ(M). Furthermore, every basis ofE \ n is also a basis

of E, and by the definition of a basis orientationχ of M is the restriction to the deletion
minor onE\n a basis orientation ofM\n. The claim follows by the above considerations
concerning the reverse lexicographic ordering.
If n ∈ E is a coloop then rankM(E \ n) = rankM(E)− 1 = r − 1, hence everyr -subset
of E \ n is a dependent set, so the first

(n−1
r

)
signs inχ(M) are all 0. Sincen is a coloop,

every basis ofM is of the formB ∪ n, whereB is a basis ofM \ n. Since every basis
of M containsn andn is always in the same (last) position of the ordered basis used for
the definition ofχ , the restriction ofχ(M) to the bases inE \ n satisfies the properties of
a basis orientation. As discussed above, the ordering of ther − 1 subsets not containing
n is the one of the corresponding extended sets at the last

(n−1
r −1

)
positions in the reverse

lexicographic order of ther -subsets ofE, which proves the claim.

Because we choose the representative oriented matroid of an isomorphism class to be the
oriented matroid with the lexicographically maximal chirotope encoding, Lemma 6.3.1
leads to the following result:

6.3.2 Proposition LetM = (E,F ) be a simple oriented matroid such thatM = rep(M),
hence E= {1, . . . , n} for some n. Set r:= rank(M).

(i) M \ n = rep(M \ n).

(ii) M has a coloop if and only if n is a coloop.

(iii) If n is not a coloop thenχ(M \ n) = χ(rep(M \ n)) is lexicographically maximal
among allχ(rep(M \ i )) for i ∈ E = {1, . . . , n}.

Proof Considerχ(M), which is by definition of rep(M) the lexicographic maximal en-
coding ofM′ ∈ IC(M). If E has a coloop, thenn must be a coloop, since by Lemma 6.3.1
then (and only then) the leading

(n−1
r

)
signs inχ(M) are all 0, which is clearly maximal

because of− < + < 0. If M \ n 6= rep(M \ n) then by definition there exists an iso-
morphism onE \ n such thatχ(M \ n) becomes lexicographically larger. Because of
Lemma 6.3.1 this also makesχ(M) larger, a contradiction toM = rep(M).
If n is not a coloop thenE does not have a coloop (see above), hence all encodings
χ(M \ i ) for i ∈ E = {1, . . . , n} have the same number of signs, which is

(n−1
r

)
.

Assume thatχ(rep(M \ n)) is lexicographically smaller thanχ(rep(M \ i )) for some
i ∈ E = {1, . . . , n}. Then there is an isomorphism which exchangesi andn that leads to
a lexicographically larger encoding ofM (already in the first

(n−1
r

)
signs), a contradiction

to rep(M) = M.
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We conclude this section by pointing out some further nice properties of the ordering in
our catalog:

6.3.3 Corollary Let M = (E,F ) be a simple oriented matroid such thatM = rep(M),
hence E= {1, . . . , n} for some n. Set r:= rank(M) and considerIC(n, r ).

(i) The first sign ofχ(M) is nonzero (hence+) if and only ifM is uniform.

(ii) All isomorphism classes of uniform oriented matroids come consecutively at the
first positions inIC(n, r ), all non-uniform oriented matroids thereafter.

(iii) All isomorphism classes of oriented matroids which have a coloop come consecu-
tively at the last positions inIC(n, r ).

Proof By the definition of a chirotope,χ(M) contains no 0 sign if and only if every
r -subset ofE is a basis ofM, which is the case if and only ifM is uniform. If M is
not uniform, a relabeling of the elements inE such that{1, . . . , r } is not a basis assures
that the first sign becomes 0. Because of− < + < 0 a maximal encoding of a non-
uniform oriented matroid will start with a 0 sign. The ordering of the classes in IC(n, r )
is lexicographically increasing in the maximal encodings. As the starting sign of uniform
cases is+ and 0 otherwise, by− < + < 0 the uniform cases come before the non-
uniform ones. Finally, by Proposition 6.3.2 (ii),M has a coloop if and only ifn is a
coloop, and by Lemma 6.3.1 this is the case if and only if all leading

(n−1
r

)
signs are 0.

Because of the lexicographical ordering and− < + < 0 the encodings of classes having
a coloop are larger than all other and come at the last positions in IC(n, r ).

Since uniform oriented matroids do not have zeros in the chirotope representation, they
are ordered observing the natural relation− < + only.

6.4 Generation of Catalog

We present in this section a method for the generation of oriented matroid isomorphism
classes, producing the catalog as described in Section 6.2. The general approach is de-
scribed in Chapter 3, and for the generation of single element extensions one of the meth-
ods from Chapters 4 and 5 is used; practically this will be algorithm LOCALIZATIONS-
PATTERNBACKTRACK since it is most efficient and we will not need extensions which
introduce coloops.

Forn = r there is only one isomorphism class (cf. Lemma 3.2.3), and the encoding in the
chirotope has only

(r
r

) = 1 sign, which is+ by definition. For the generation of IC(n, r )
with n > r ≥ 1 the procedure is as follows:

• Initialize IC(n, r ) := ∅.

• For everyc from 1 to| IC(n − 1, r )| do:
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– Let M be the representative of IC(n − 1, r, c), given by its encodingχ(M).

– Compute all single element extensionsM′ of M, where the new elementn is
not a coloop ofM′ andM′ is simple.

– For every single element extensionM′ compute rep(M′) by computing the
maximal encodingχ(rep(M′)).

– Keep only those extensionsM′ of M for which the first
(n−1

r

)
signs of

χ(rep(M′)) are equal toχ(M).

– Sort all remaining extensions w.r.t. increasing lexicographical order of the en-
codingsχ(rep(M′)).

– Remove multiple entries in the sorted list of extensions.

– Append the sorted list to IC(n, r ).

• For everyc from 1 to| IC(n − 1, r − 1)| do:

– Let beM the representative of IC(n−1, r −1, c), given by its encodingχ(M).

– Let χ ′ be the vector of
(n
r

)
signs whose first

(n−1
r

)
signs are all 0 and whose

last
(n−1
r −1

)
signs are those ofχ(M) (in the same order).

– Appendχ ′ to IC(n, r ).

6.4.1 Proposition Assume thatIC(n − 1, r − 1) and IC(n − 1, r ) have been generated
correctly before. Then the method described above correctly generatesIC(n, r ).

Proof Every class in IC(n, r ) is generated exactly once: LetM be the representative of
IC(n, r, c). M has to be generated from some deletion minor.

• If M does not have a coloop, every deletion minorM \ i belongs to some class
in IC(n − 1, r ). For i ∈ {1, . . . , n} considerMi := rep(M \ i ). The algorithm
writes the single element extensionM = rep(M) to IC(n, r ) if and only if the first(n−1

r

)
signs ofχ(M) are equal toχ(Mi ). Sincen is not a coloop ofM and by

Lemma 6.3.1 (i) this is the case if and only ifχ(M \ n) = χ(Mi ), i.e., if and only
if M \ n = Mi . Hence,M is generated exactly once, namely when the algorithm
considers the class ofM \ n.

• If M has a coloop then every coloop minor is the same. This can be seen considering
the set of cocircuitsD and some coloope: by the definition of a coloop there are
two cocircuitsX,−X ∈ D with X = {e}, and, by cocircuit axiom (C2),Ye = 0 for
all other cocircuitsY ∈ D . The algorithm generatesM once when considering the
isomorphism class of its (unique) coloop minor.

Every class in IC(n, r ) is represented correctly:

• If M does not have a coloop, the representative rep(M) is computed explicitly in
the algorithm.
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• If M has a coloop then its representation is computed from the representation of its
unique coloop minor by adding leading 0 signs. By Proposition 6.3.2 (ii),n has to
be a coloop, and by Lemma 6.3.1 this is a correct encoding ofM. This encoding is
lexicographically maximal since the representative of the coloop minor is given by
its lexicographical maximal encoding.

Every class in IC(n, r ) is at the correct position: By Corollary 6.3.3, it is correct to gen-
erate first classes of oriented matroids which do not have a coloop, then the other classes.
Among the classes of oriented matroids without coloop the main order is given by the
first

(n−1
r

)
signs of the encodingχ(M) of every representativeM, which isχ(M \ n) and

which is sorted since the algorithm generates the extensions in the order of IC(n − 1, r ).
The lexicographic order of representatives which have the same first

(n−1
r

)
signs in the

encoding and hence come from the same deletion minor is obtained by sorting them in
the algorithm. Among the classes of oriented matroids which have a coloop the order
is trivially the same as in IC(n − 1, r − 1), which was assumed to be lexicographically
sorted.

Since the extensions of uniform minors have to be uniform again (otherwise they are dis-
carded in the generation method), this first part may use a specialized algorithm which
generates uniform single element extensions only. Such a specialization can be easily ob-
tained from algorithm LOCALIZATIONSPATTERNBACKTRACK (see Section 5.4) by re-
stricting to coline patterns of type III (cf. Theorem 5.2.4).

The generation method of this section can be viewed as a sort of reverse search method
(see also Section 4.3). The only difference is between the adjacency oracle of a reverse
search method [AF96] and the corresponding part in our generation method, which is the
generation of single element extensions of some isomorphism class in IC(n − 1, r ). An
adjacency oracle is indexed by an explicit integer, which makes it possible to consider
one adjacency (i.e., single element extension) after the other. In our generation method
all single element extensions are computed at once, and we cannot avoid multiple exten-
sions from the same minor other than comparing the representatives. However, multiple
extensions from different deletion minors are avoided as it is the case in a reverse search
method.

A major computational drawback of the method is the need to compute the representa-
tives of all single element extensions. Our representation using a reverse lexicographical
order of the bases has the difficulty that the computation of the maximal encodings seems
to be rather hard, which is simpler when using a lexicographical order of bases as usual
(personal communication with J¨urgen Bokowski and J¨urgen Richter-Gebert) or a repre-
sentation by so-calledλ-matrices [GP83, AAK01]. There seems to be a large potential of
improvement of practical generation methods when using a representative of the isomor-
phism classes which can be computed faster. However, our choice of representation is still
good enough not only to compute all cases which were known previously (i.e., uniform
oriented matroids) but also to generate all non-uniform classes for the samen andr as
considered for the uniform cases; this is presented in the following section.
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6.5 Overview of Results

This section gives an overview of the results obtained by the generation methods that have
been presented in this thesis. This summary displays the number of isomorphism classes
of oriented matroids and indicates run time and memory usage.

Table 6.3 shows the numbers| IC(n, r )| of isomorphism classes of oriented matroids for
r ≤ n ≤ 10. Missing numbers forr = 1 andn < r stand for empty lists IC(n, r ),
whereas the other missing numbers are unknown. The isomorphism classes not only have
been counted but entirely listed (see also Section 6.6).

n = 1 2 3 4 5 6 7 8 9 10

r = 1 1
r = 2 1 1 1 1 1 1 1 1 1
r = 3 1 2 4 17 143 4 890 461 053 95 052 532
r = 4 1 3 12 206 181 472
r = 5 1 4 25 6 029
r = 6 1 5 50 508 321
r = 7 1 6 91
r = 8 1 7 164
r = 9 1 8
r = 10 1

Table 6.3: Number of isomorphism classes of oriented matroids

For comparison, Table 6.4 shows the numbers of isomorphism classes ofuniformoriented
matroids forr ≤ n ≤ 10. These numbers have been computed before (see Table 6

n = 1 2 3 4 5 6 7 8 9 10

r = 1 1
r = 2 1 1 1 1 1 1 1 1 1
r = 3 1 1 1 4 11 135 4 382 312 356
r = 4 1 1 1 11 2 628
r = 5 1 1 1 135
r = 6 1 1 1 4 382
r = 7 1 1 1
r = 8 1 1 1
r = 9 1 1
r = 10 1

Table 6.4: Number of isomorphism classes of uniform oriented matroids

in [Bok93]) and completely coincide with the numbers obtained by our programs. The
generation usually was considered together with the realizability problem, the problem
whether an oriented matroid can be realized by coordinates in Euclidean space (see also
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Section 0.1). Forr = 3, the generation and classification of the uniform cases is due
to Grünbaum [Gr¨u67, Grü72] for n = 7, Goodman and Pollack [GP80a] forn = 8,
Richter-Gebert [Ric88] and Gonzalez-Sprinberg and Laffaille [GSL89] forn = 9, finally
Bokowski, Laffaille, and Richter-Gebert (unpublished) forn = 10; for r = 4 andn =
8 the classification is due to Bokowski and Richter-Gebert [BRG90]. The realizability
problem is attacked from two sides: (i) finding realizations (using randomly generated
points, various insertion or perturbation techniques) and (ii) proving that no realization
can exist (e.g., with final polynomials [RG92]). The general case still needs work in both
directions: Finding coordinates has the additional difficulty that some realizable instances
do not have rational solutions; on the other hand some of the earlier methods to detect non-
realizability have to be generalized to the degenerate case. The numbers of non-realizable
uniform isomorphism classes are shown in Table 6.5. The classification problem for the
general case is solved forr = 3 andn ≤ 8 due to Goodman and Pollack [GP80b] (all
cases are realizable, which was a conjecture of Gr¨unbaum [Gr¨u72]).

n = 1 2 3 4 5 6 7 8 9 10

r = 1 0
r = 2 0 0 0 0 0 0 0 0 0
r = 3 0 0 0 0 0 0 1 242
r = 4 0 0 0 0 24
r = 5 0 0 0 0
r = 6 0 0 0 1
r = 7 0 0 0 242
r = 8 0 0 0
r = 9 0 0
r = 10 0

Table 6.5: Number of non-realizable isomorphism classes of uniform oriented matroids

In the uniform case there is a symmetry of the numbers of isomorphism classes (for given
n there are as many uniform classes of rankr as of rankn − r ) which can be explained
by duality arguments (uniform oriented matroids are simple and co-simple; see also Sec-
tion 3.2). This symmetry implies| IC(10, 7)| = 312 356; we did not display this number
in Table 6.4 as this is the only number not computed directly. The symmetry under dual-
ization disappears when moving from uniform to general oriented matroids. The reason
for this asymmetry is that dualization of oriented matroids does not preserve the property
of being simple: it is possible that non-parallel elements become parallel, furthermore
coloops will become loops (see Lemma 0.5.9); for details see Section 3.2.

Table 6.6 shows CPU times needed to compute the isomorphism classes of oriented ma-
troids on a Sun Sparc Ultra-60 using one processor at 360 MHz. A ’-’ sign indicates that
the run time is very short, and ’≈’ indicates an approximate value. In current implemen-
tations most of the time is spent to compute the representation of an oriented matroid as
its maximal chirotope encoding (see comments at the end of the previous section).

For those cases where there is a significant amount of CPU time, Table 6.7 shows the
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n = 1 2 3 4 5 6 7 8 9 10

r = 1 -
r = 2 - - - - - - - - -
r = 3 - - - - 3 sec 2.2 min 3.6 hours≈72 days
r = 4 - - - 10 sec 4.1 hours
r = 5 - - 2 sec 48.3 min
r = 6 - - 26 sec ≈10 days
r = 7 - - 9.9 min
r = 8 - - 4.8 hours
r = 9 - -
r = 10 -

Table 6.6: CPU time needed to compute isomorphism classes of oriented matroids

n = 7 8 9 10

r = 3 21 27 28 ≈65
r = 4 49 80
r = 5 80 481
r = 6 - 520 ≈1 699
r = 7 - - 6 527
r = 8 - - 106 463

Table 6.7: Average CPU time needed to compute one isomorphism class (in milliseconds)

average time used for one isomorphism class. There is a tremendous increase as rank
r increases, and a more moderate increase in the number of elementsn. This can be
explained by the computation of representatives which is significantly more difficult in
higher rank (this is also the case for other choices of representatives which are indicated
at the end of the previous section). This motivates to compute the classes of higher rank
by dualization. The computation of the dual of an oriented matroid is easy when using
basis orientations (see Lemma 0.9.8). For special cases (IC(n, r ) with r ≥ n − 2) the
enumeration of isomorphism classes becomes rather simple; e.g., for IC(n, n−2) the CPU
time is almost negligible compared to the direct primal approach as used for Tables 6.6
and 6.7. However, the dualization of a set of isomorphism classes is not straightforward
in the general case (see Section 3.2 for more details about the dualization approach).

The memory usage of our generation method is small as there is no need to store many
intermediate results. The memory usage on disk used to store the isomorphism classes is
shown in Table 6.8. The isomorphism classes are stored by the chirotope encodings of
the representative as defined in Section 6.2. For every class in IC(n, r ) there are

(n
r

)
signs

to be stored, which are encoded using 2 bits for every sign. For the storage of the larger
lists IC(n, r ) (namely whenn ≥ 8, r ≥ 3, andn − r ≥ 2) an indirect format is used: for
every non-coloop minorM \ n an integer indicates the number of extensions from this
minor, which makes it possible to store only the last

(n−1
r −1

)
signs of every extension (the

first
(n−1

r

)
signs coincide with those of the minor); coloop extensions are not stored at all.



144 A CATALOG OF ORIENTED MATROIDS

n = 1 2 3 4 5 6 7 8 9 10

r = 1 1
r = 2 1 1 2 3 4 6 7 9 12
r = 3 1 2 10 85 1 252 26 248 3 246 932 857 316 999
r = 4 1 4 45 1 803 1 587 461
r = 5 1 6 132 51 060
r = 6 1 9 160 7 032 296
r = 7 1 12 319
r = 8 1 16 693
r = 9 1 20
r = 10 1

Table 6.8: Memory used to store isomorphism classes of oriented matroids (in bytes,
where every byte has 8 bits)

6.6 Access to Catalog and Examples

This section presents part of the catalog of oriented matroids, namely the small-
est sets of isomorphism classes given by their maximal chirotope encoding (see
Section 6.2). The complete catalog can be accessed via the Internet on
http://www.om.math.ethz.ch .

We consider first the special cases:

• Forn < r or n > r = 1, all lists IC(n, r ) are empty.

• For n = r ≥ 1, all lists IC(n, r ) contain exactly one isomorphism class, which is
uniform and represented by one+ sign (cf. Lemma 3.2.3).

• For r = 2 there is exactly one class in IC(n, r ) (see Corollary 1.4.4) which is
represented by

(n
2

)
signs which are all+ (hence this unique class corresponds to a

uniform oriented matroid).

• Forn = r +1 there are exactlyn−2 = r −1 classes in IC(n, r ) (see Lemma 3.2.4),
where IC(n, r, c) is represented by

( n
n−1

) = n signs whosec−1 first signs are 0 and
all the remaining signs are+.

In the following we give the listings of the smaller of the remaining cases.

Table 6.9 shows the listing of the 4 isomorphism classes in IC(5, 3). These 4 classes
are contained as non-coloop minors in IC(6, 3) (see Table 6.2) and as coloop minors in
IC(6, 4) (see Table 6.10).

The 17 isomorphism classes in IC(6, 3) have been given in Table 6.2.

Table 6.10 shows the 12 isomorphism classes in IC(6, 4).
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1 1 1 2 1 1 2 1 23
2 2 3 3 2 3 3 4 4 4

c 3 4 4 4 5 5 5 5 5 5
1 + + + + + + + + + +
2 0 + + + + + + + + +
3 0 + + + + + + 0 + +
4 0 0 0 0+ + + + + +

Table 6.9: The 4 isomorphism classes in IC(5, 3)

1 1 1 1 2 1 1 1 2 1 1 2 1 23
2 2 2 3 3 2 2 3 3 2 3 3 4 4 4
3 3 4 4 4 3 4 4 4 5 5 5 5 5 5

c 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6
1 + + + + + + + + + + + + + + +
2 0 + + + + + + + + + + + + + +
3 0 + + + + + + + + 0 + − + − −
4 0 + + + + + + + + 0 + + + + +
5 0 + + + + + + + + 0 + + + + 0
6 0 0 + + + 0 + + + + + + + + +
7 0 0 + + + 0 + + + + + + 0 + +
8 0 0 + + + 0 + + + + + + 0 0 0
9 0 0 0 0 0+ + + + + + + + + +

10 0 0 0 0 0 0+ + + + + + + + +
11 0 0 0 0 0 0+ + + + + + 0 + +
12 0 0 0 0 0 0 0 0 0+ + + + + +

Table 6.10: The 12 isomorphism classes in IC(6, 4)





I made me no more ado but took all their seven
points in my target, thus.

HENRY IV (I:2,4)

Chapter 7

Complete Listing of Point
Configurations

7.1 Introduction

The generation of combinatorial types of geometric objects such as point configurations,
polytopes, or hyperplane arrangements has long been an outstanding problem of combi-
natorial geometry. We consider in this chapter point configurations and polytopes, in the
following Chapter 8 hyperplane arrangements.

A point configurationis a set ofn points in the real Euclidean spaceRd. Its combinatorial
type, calledorder type, is determined by the relative positions of the points, more formally
by the set of all partitions of then points by hyperplanes, where the points may be arbitrar-
ily relabeled. Apolytopeis the convex hull of a point configuration. The combinatorial
type of a polytope is determined by its face lattice.

For the generation of these combinatorial types no direct method is known, and it appears
to be necessary to use combinatorial abstractions as has been the case in previous investi-
gations [GP83, Knu92, AAK01]; the abstractions used so far (such as allowable sequences
of permutations orλ-functions) usually fall together with certain classes of oriented ma-
troids. Although it is NP-hard to decide whether a given oriented matroid is realizable
or not [Mnë88, Sho91], the known classifications [Gr¨u67, Grü72, GP80a, Ric88, GSL89,
BRG90] and the practical realization methods [RG92] let the approach using oriented
matroids become a successful method for the generation of combinatorial types.

The former work concentrated on the special case of low dimensions (i.e.,d = 2 ord = 3)
and non-degenerate configurations (e.g., no three points lie on a line) which corresponds
to uniform oriented matroids. Our goal is to generate the entire list of all cases for smalln,
including degenerate cases in arbitrary dimensiond. However, we will restrict ourselves
to the generation ofabstractcombinatorial types and will not consider the realizability
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problem here. Nevertheless, this complete generation of abstract order types offers a
powerful data base for various investigations as we will show by an example.

7.2 Point Configurations and Acyclic Oriented Matroids

We explain in this section how combinatorial types of point configurations relate to ori-
ented matroids. We will use the illustration by sphere arrangements as introduced in
Section 0.1.

Consider a point configurationP = {v1, . . . , vn} in Rd. An oriented hyperplaneH
partitionsP into vertices on the− side ofH , on the+ side ofH , and vertices contained in
H . This defines a corresponding sign vector in{−,+, 0}n, see Figure 7.1. The collection

1

2

34

5

+
−

H

( 0 + − − 0 )

Figure 7.1: Sign vector defined by a hyperplane in a point configuration

of all possible sign vectors obtained by hyperplanes fromP defines the order type ofP .
More formally, every oriented hyperplaneH in Rd can be described by a normal vector
x ∈ Rd which points to the+ side ofH and a translation given byxd+1 ∈ R such that the
sign vectorX defined byP andH has the componentsXe = sign(

∑d
i=1 v

e
i xi + xd+1) for

e ∈ E. It is natural to introduce homogeneous coordinates by settingve
d+1 := 1 for e ∈ E

as then
∑d

i=1 v
e
i xi + xd+1 becomes the scalar product ofve andx in Rd+1. Furthermore,

we can defineA(P ) to be the matrix of then = |E| column vectorsve ∈ Rd+1, e ∈ E.
Similar as in Section 0.1, we define forA := A(P ) the set of sign vectorsF (P ) :=
{sign(AT x) | x ∈ Rd+1}, and we know from Section 0.1 thatF (P ) is the set of covectors
of a realizable oriented matroid.

7.2.1 Definition (Order Type of a Point Configuration) Consider a point configuration
P = {ve | e ∈ E} in Rd on a finite ground setE. DefineF (P ) as described above. The
order type ofP is defined as the relabeling class LC(F (P )) of the setF (P ).

The above definition of an order type is exactly what we initially have described, except
that the zero vector0 is always inF (P ). The considerations from Section 0.1 imply that
(E,F (P )) is an oriented matroid. Furthermore, the sign vector(+ . . . + ) is in F (P ).
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7.2.2 Definition (Acyclic Oriented Matroid) An oriented matroidM = (E,F ) such
that there isX ∈ F with Xe = + for all e ∈ E is called anacyclic oriented matroid.

7.2.3 Lemma Let P be a point configuration on ground set E. Then(E,F (P )) is an
acyclic oriented matroid.

The following illustration may clarify that there is a one-to-one correspondence between
order types and relabeling classes of realizable acyclic oriented matroids. We embedP
in Rd+1 by addingve

d+1 = 1 to everyve. Geometrically, we can consider the extended
vectors fromP as the normal vectors of a central arrangement of hyperplanes, and this
intersected with the unit sphereSd leads to a sphere arrangement as depicted in Figure 7.2.
Every sphere in the arrangement has an orientation according to the corresponding normal

Figure 7.2: Point configuration and sphere arrangement

vector, and by this every cell in the sphere arrangement has a one-to-one relation to a sign
vector inF (P ) as introduced above. Note that the cell containingv = (0, . . . , 0, 1)
corresponds to the sign vector(+ · · ·+) ∈ F (P ). The dimension of the oriented matroid
defined by the sphere arrangement isd unless the points ofP are contained in a(d − 1)-
dimensional affine subspace.

On the other hand, if a realizable oriented matroidM of dimensiond is acyclic then
there exists a representation by ad-dimensional sphere arrangementS where some region
corresponds to the tope(+ · · ·+); after an appropriate rotation ofS we can assume that
this region contains the vector(0, . . . , 0, 1). The normal vector of every sphereSe ∈ S
which points to the+ side ofSe can be scaled such that the(d + 1)-coordinate is 1. The
set of these scaled normal vectors defines ad-dimensional point configurationP which is
embedded in the hyperplane of points having a(d+1)-coordinate equal to 1. The oriented
matroid(E,F (P )) is the same asM if the points are labeled accordingly.

If a point configuration is non-degenerate, i.e., the points are in general position, then the
corresponding acyclic oriented matroid is uniform, and vice versa.
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7.2.4 Definition (Abstract Order Type) We call the relabeling class of an acyclic ori-
ented matroid anabstract order type. We call the relabeling class of a uniform acyclic
oriented matroid anon-degenerate abstract order type.

7.3 Generation of Abstract Order Types

We will generate abstract order types, i.e., relabeling classes of acyclic oriented matroids,
using the catalog of oriented matroids which has been presented in Chapter 6. For this
considern andd and, observing the relation of dimension and rank (cf. Definition 0.4.5),
the complete list IC(n, d + 1) of all oriented matroids ofn elements and rankd + 1 up to
isomorphism, i.e., up to reorientation and relabeling, as defined in Chapter 6.

Using the model of above we may think of IC(n, d + 1) as a list containing all types of
unlabeled and unoriented topological sphere arrangements withn spheres onSd. Abstract
order types have the special property that some cell in the oriented sphere arrangement
corresponds to the sign vector(+ · · ·+). Consider any oriented sphere arrangementS in
IC(n, d + 1), in S some cellc of maximal dimension and its corresponding sign vector
X(c): A reorientation ofS according toX(c) will let c correspond to(+ · · ·+). Hence
the list of all sign vectors corresponding to cells of maximal dimension inS, which is the
set of topes of the oriented matroid, is sufficient to find all abstract order types isomorphic
to S.

In terms of oriented matroids, the algorithm is the following:

• Setr := d + 1.

• For every class IC(n, r, c) in IC(n, r ) do:

– Let M be the representative of IC(n, r, c), given by its encodingχ(M).

– Compute the set of cocircuitsD from χ(M) (see Proposition 0.9.7).

– Compute fromD the set of topesT using algorithm TOPESFROMCOCIR-
CUITS (see Pseudo-Code 1.5).

– For every topeX ∈ T compute the reorientation ofD according toX and
its lexicographically maximal chirotope encoding w.r.t. relabeling (cf. Defini-
tion 6.2.1).

– Remove multiple entries in the list of maximal encodings of reorientations,
and output the resulting list.

Note that every abstract order type belongs to a unique isomorphism class of oriented
matroids, hence every abstract order type is generated exactly once.

Tables 7.1 shows the numbers of abstract order types obtained by computations. Note that
there are considerably fewernon-degenerateabstract order types, i.e., abstract order types
corresponding to uniform oriented matroids (see Table 7.2).
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n = 2 3 4 5 6 7 8 9 10

d = 1 1 1 1 1 1 1 1 1 1
d = 2 1 3 11 93 2 121 122 508 15 296 266
d = 3 1 5 55 5 083 10 775 236
d = 4 1 8 204 505 336
d = 5 1 11 705
d = 6 1 15 2 293
d = 7 1 19
d = 8 1 24
d = 9 1

Table 7.1: Number of abstract order types

n = 2 3 4 5 6 7 8 9 10

d = 1 1 1 1 1 1 1 1 1 1
d = 2 1 2 3 16 135 3 315 158 830
d = 3 1 2 4 246 160 020
d = 4 1 3 8 11 174
d = 5 1 3 11 938 513
d = 6 1 4 22
d = 7 1 4 33
d = 8 1 5
d = 9 1

Table 7.2: Number of non-degenerate abstract order types

As discussed in Section 6.5, not all oriented matroids are realizable.Non-degenerateab-
stract order types inR2 have been generated recently also by Aichholzer, Aurenhammer,
and Krasser [AAK01] forn ≤ 10. Their numbers coincide with ours forn ≤ 9; the
number forn = 10 is 14 320 182. They also realized these non-degenerate abstract order
types (using the known numbers of isomorphism classes of uniform oriented matroid as
a stopping criterion); the numbers of non-realizable non-degenerate abstract order types
are listed in Table 7.3.

n = 3 4 5 6 7 8 9 10

d = 2 0 0 0 0 0 0 13 10 635

Table 7.3: Number of non-realizable non-degenerate abstract order types of rank 3

We present in Figures 7.3 to 7.5 realizations of abstract order types for small instances in
R2, i.e., for configurations of 3 to 6 points (here, all abstract order types can be realized).
The trivial types of collinear points (i.e., all points on a line) correspond to combinatorial
types inR1 and are not counted inR2. We draw the point configurations in Figures 7.3 to
7.5 with some lines which may be helpful when reading the picture. The following rule
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was used for drawing of lines:

1. draw all lines which contain three or more points from the point configuration;

2. determine the points on the boundary of the convex hull of the point configuration;

3. if there is a point in the interior of the convex hull, then draw all lines which contain
(at least) two points from the boundary of the convex hull, otherwise only draw
those lines which contain a facet of the convex hull;

4. remove all points on the boundary of the convex hull and repeat steps 2 to 4 for the
remaining points (in general several times, which was not necessary here).

Figure 7.3: The order types with 3 and 4 non-collinear points inR2

Figure 7.4: The 11 order types with 5 non-collinear points inR2; only the first 3 are
non-degenerate
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Figure 7.5: The 93 order types with 6 non-collinear points inR2; only the first 16 are
non-degenerate
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7.4 Polytopes and Matroid Polytopes

We apply the listing of abstract order types for a corresponding listing of combinatorial
types of polytopes.

Let P be ad-dimensional point configuration, i.e.,P is in Rd and we assume thatP is
not contained in an affine(d − 1)-dimensional subspace. The convex hull ofP defines
a d-dimensional polytope. Everyd-dimensional polytope can be defined this way. A
point x ∈ P is called avertex(or anextreme point) of P if it is not contained in the
convex hull of the other points inP . Equivalently, a point is a vertex if and only if there
exists a hyperplane which separates the point from all the others. The convex hull of the
vertices ofP defines the same polytope asP , hence every polytope is defined by a point
configuration whose points are all vertices. The corresponding abstraction to oriented
matroids reads as follows:

7.4.1 Definition (Extreme Point, Matroid Polytope) Let M = (E,F ) be an acyclic
oriented matroid. We calle ∈ E an extreme pointif X ∈ F such thatXe = − and
X f = + for all f ∈ E \ e. We callM a matroid polytopeif every elemente ∈ E is an
extreme point.

For more about matroid polytopes and the related theory see also Chapter 9 of
[BLVS+99].

The list of abstract order types has been used to compute all relabeling classes of ma-
troid polytopes. The procedure uses algorithm TOPESFROMCOCIRCUITS (see Pseudo-
Code 1.5), as then the set of topes can be inspected: if for everye ∈ E there is a topeX
such thatXe = − andX f = + for all f ∈ E \ e, then we have found a matroid polytope.
The numbers of matroid polytopes (up to relabeling) can be found in Table 7.4.

n = 3 4 5 6 7 8 9 10

d = 2 1 1 1 1 1 1 1 1
d = 3 1 2 12 361 250 591
d = 4 1 4 62 109 786
d = 5 1 6 302
d = 6 1 9 1 239
d = 7 1 12
d = 8 1 16
d = 9 1

Table 7.4: Number of relabeling classes of matroid polytopes

Thecombinatorial typeof a polytope is determined by its face lattice [Gr¨u67, Zie95]. A
face of a polytope corresponds to a non-negative (or non-positive) covector in the corre-
sponding matroid polytope. By this we can identify two matroid polytopes which corre-
spond to polytopes of same combinatorial type:
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7.4.2 Definition (Combinatorial Polytope Type) Let M = (E,F ) be a matroid poly-
tope. We call a covectorX ∈ F a polytope face ofM if X ≥ 0 (i.e., Xe ∈ {+, 0} for all
e ∈ E). Thecombinatorial polytope typeis determined by the set of polytope faces ofM
up to relabeling: two matroid polytopes haveequal combinatorial polytope typeif they
can be relabeled such that their sets of polytope faces are equal.

If we count the combinatorial polytope types of matroid polytopes, it turns out that the
numbers coincide with the known numbers of combinatorial types of polytopes. In other
words, every combinatorial polytope type of a matroid polytope in our list can be real-
ized by coordinates for the vertices. Hence, if for every combinatorial type of polytopes
coordinates are known, then our listings prove the completeness of the known classifi-
cations (which is an independent proof as our techniques are new). The classification
of combinatorial types of polytopes can be found in [Gr¨u67, KK95, AS84, AS85]). Ta-
ble 7.5 shows the number of combinatorial polytope types of matroid polytopes which
have been counted from our listings of matroid polytopes. These numbers are the
same as the numbers of combinatorial types ofd-dimensional polytopes withn ver-
tices. Additional numbers are known ford = 3 due to Steinitz’ Theorem [SR34] which

n = 3 4 5 6 7 8 9 10

d = 2 1 1 1 1 1 1 1 1
d = 3 1 2 7 34 257
d = 4 1 4 31 1 294
d = 5 1 6 116
d = 6 1 9 379
d = 7 1 12
d = 8 1 16
d = 9 1

Table 7.5: Number of combinatorial polytope types of matroid polytopes

characterizes the graphs defined by vertices and edges of 3-dimensional polytopes as 3-
connected planar graphs; there are 2606, 32300, 440564, 6384634,. . . combinatorial types
for n = 9, 10, 11, 12, . . . (see also [Gr¨u67, KK95] and Sequence A000944 in [Slo01]).
Furthermore, the number of combinatorial types ofd-dimensional polytopes withd + 2
vertices isb1

4d2c [Grü67], wherebxc denotes the largest integer which is not larger than
x. There is also a formula for polytopes withd + 3 vertices stated by Lloyd in [Llo70];
it was doubted before whether this formula is completely correct (e.g., see page 172 in
[Zie95]), and we found out that this is not the case: Lloyd’s formula gives a value of
30 combinatorial types ford = 4, correct would be 31 (also for largerd the values are
incorrect: 111 and 361 instead of 116 and 379 ford = 5 andd = 6, respectively).

A d-dimensional polytope is calledsimplicial if all its (d − 1)-dimensional faces are
(d − 1)-dimensional simplices, which are(d − 1)-dimensional polytopes withd vertices
in general position. Correspondingly, we call a matroid polytopeM = (E,F ) simplicial
if each non-negative cocircuitX ∈ D hasd elements inX0, in other words every polytope
faceX ≥ 0 of M with dimM(X0) = d satisfies|X0| = d. Note that this is not the same
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as uniformity ofM. Among the numerous investigations on simplicial polytopes there
are also studies w.r.t. the combinatorial types. We computed the number of combinato-
rial polytope types of simplicial matroid polytopes which is shown in Table 7.6. For the

n = 3 4 5 6 7 8 9 10

d = 2 1 1 1 1 1 1 1 1
d = 3 1 1 2 5 14
d = 4 1 2 5 37
d = 5 1 2 8
d = 6 1 3 18
d = 7 1 3
d = 8 1 4
d = 9 1

Table 7.6: Number of combinatorial polytope types of simplicial matroid polytopes

classification of combinatorial types of simplicial polytopes see [Gr¨u67, KK95]. More
numbers than presented in Table 7.6 are known ford = 3, where the numbers are 50, 233,
1249, 7595,. . . for n = 9, 10, 11, 12. . . (see also Sequence A000109 in [Slo01]), and for
d = 4 andn = 9, where the number of combinatorial types is 1142 [ABS80], which has
been obtained by classification of simplicial 3-spheres into polytopal and non-polytopal
spheres and where a non-realizability argument coming from the theory of oriented ma-
troids played an important role. In addition, it is known forn = d + 2 that there areb1

2dc
simplicial types [Gr¨u67], and there is also a formula forn = d + 3 (Perles in [Gr¨u67], see
also Sequence A000943 in [Slo01]), which gives 29 forn = 10 andd = 7.

We suggest that the generation of oriented matroids may lead to more results concerning
the combinatorial types of polytopes, especially when specialized generation methods re-
strict to matroid polytopes only. It is important to note that our results on the classification
of general polytopes are based on the generation of general oriented matroids, including
non-uniform ones. It may be an interesting future project to investigate the potential of
(specialized) generation methods in connection with known techniques (e.g., Gale trans-
forms [Grü67, BLVS+99]) used for classifications so far.

7.5 A Conjecture Related to the Sylvester-Gallai Theo-
rem

We discuss in this section a conjecture of da Silva and Fukuda (Conjecture 4.2 in [dSF98])
which is related to the well-known Sylvester-Gallai Theorem for point configurations. Our
complete listing of abstract order types will decide the conjecture partially.

We introduce first some notions which are used in the following. Consider a point config-
urationP = {x1, . . . , xn} in the Euclidean planeR2. We assume for the following that
the points inP arenon-collinear, i.e., there is no line which contains all points inP . We
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call a line inR2 anelementary lineif it contains exactly two points ofP . A non-Radon
partition ofP is a partition ofP into three disjoint subsetsP −,P +,P 0 such that there
exist an oriented lines for which P − is the set of point inP on the− side ofs, P + the
set of points on the+ side ofs, andP 0 the set of points inP ons. A maximalnon-Radon
partition ofP is a non-Radon partition withP 0 = ∅, i.e., the separating lines does not
contain any point fromP . A maximal non-Radon partition ofP is calledbalancedif∣∣|P −| − |P +|∣∣ ≤ 1.

The Sylvester-Gallai Theorem states that in every configuration of non-collinear points in
R2 there exists an elementary line.

7.5.1 Conjecture (da Silva and Fukuda [dSF98])Let P be a configuration of non-
collinear points inR2. For every balanced, maximal non-Radon partition{P −,P +,P 0}
of P there exist x− ∈ P −, x+ ∈ P + which are contained in an elementary line.

An elementary line containingx− ∈ P − andx+ ∈ P + is also called acrossingelemen-
tary line.

Some weaker versions of Conjecture 7.5.1 have been proved by Pach and Pinchasi [PP00].

Let us translate the above notions into the language of oriented matroids, and without loss
of generality we restrict for the following to simple oriented matroids. Configurations of
non-collinear points inR2 correspond to acyclic oriented matroids of rank 3, and non-
Radon partitions to covectors. A maximal non-Radon partition is a tope, and a topeX
corresponds to a balanced non-Radon partition if

∣∣|X−| − |X+|∣∣ ≤ 1; we call such a tope
balanced. This leads to the following oriented matroid version of the above conjecture:

7.5.2 Conjecture (Oriented Matroid Version of da Silva-Fukuda Conjecture) Let
M = (E,F ) be a simple acyclic oriented matroid of rank 3. For every balanced
tope X ofM there is a pair{e, f } ∈ E of elements such that Xe = −X f 6= 0 and
spanM ({e, f }) = {e, f } or, equivalently, there exists a cocircuit Y∈ F with Y0 = {e, f }.

Conjecture 7.5.2 was tested forn ≤ 9 against the complete list of abstract order types,
i.e., relabeling classes of acyclic oriented matroids; forn = 10 the conjecture has been
tested based on the list of isomorphism classes of oriented matroids. The result of these
tests is the following:

7.5.3 Proposition Conjecture 7.5.2 is valid for|E| ≤ 8 and |E| = 10. There is (up to
relabeling) exactly one (simple) acyclic oriented matroid with|E| = 9 elements which
does not satisfy Conjecture 7.5.2; for all other 15 296 265 abstract order types of d= 2
and|E| = 9 Conjecture 7.5.2 holds.

7.5.4 Corollary Conjecture 7.5.1 is valid for|P | ≤ 8 and|P | = 10.

The unique abstract order type in Proposition 7.5.3 which does not satisfy Conjec-
ture 7.5.2 can be given by a set of 30 cocircuits as in Table 7.7, where a violating balanced
tope is(− − + + + + + − −); this tope is, up to negative, the only violating tope out of
52 topes.
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0 0 0 0− − − − + 0 0 0 0+ + + + −
0 − − − 0 0 + + − 0 + + + 0 0 − − +
0 − − − − − 0 0 − 0 + + + + + 0 0 +
0 − − − − − − − 0 0 + + + + + + + 0
− 0 + + 0 − 0 − + + 0 − − 0 + 0 + −
− 0 + + + 0 + − 0 + 0 − − − 0 − + 0
− 0 + + + + + 0 − + 0 − − − − − 0 +
− − 0 + 0 − + − 0 + + 0 − 0 + − + 0
− − 0 + + 0 + 0 − + + 0 − − 0 − 0 +
− − 0 + − − 0 − + + + 0 − + + 0 + −
− − − 0 0 − + 0 − + + + 0 0 + − 0 +
− − − 0 + 0 + + − + + + 0 − 0 − − +
− − − 0 − − 0 − 0 + + + 0 + + 0 + 0
− + + + + 0 0 − + + − − − − 0 0 + −
− + + + + + + 0 0 + − − − − − − 0 0

Table 7.7: Cocircuits of oriented matroid violating Conjecture 7.5.2

It was found that the above oriented matroid given in Table 7.7 is realizable; corresponding
coordinates for the 9 points are shown in Table 7.8. Furthermore, a violating non-Radon
partition is given by the line through the points(0.35, 1) and(0.6,−1), i.e., the line is
defined by 8x + y = 3.8 for

(x
y

) ∈ R2. A picture of the counter-example can be found in
Figure 7.6.

In order to prove that the coordinates of Table 7.8 are a correct counter-example, the reader
has to verify the non-trivial collinearities shown in Table 7.9. Furthermore it has to be
verified that the line 8x+y = 3.8 partitions the 9 points into{1, 2, 8, 9} and{3, 4, 5, 6, 7}.
Finally note that there is no crossing elementary line: for each choice ofr ∈ {1, 2, 8, 9}
ands ∈ {3, 4, 5, 6, 7} there existst ∈ {1, . . . , 9} \ {r, s} such thatr, s, t are collinear. This
leads to the following result:

7.5.5 Proposition There exists a configuration of 9 points for which Conjecture 7.5.1 is
not valid. Every configuration of 9 points for which Conjecture 7.5.1 is not valid has the
same order type.

Conjecture 7.5.1 remains open forn ≥ 11, especially also for an even number of points.

It will be interesting to see more applications of the listing of abstract order types, and
also to see to what extend specialized generation algorithms can be used for resolving
geometric conjectures.
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Algebraic Numerical
(exact) (approx.)

# x y x y

1 1 1 1.0000 1.0000

2 1
2 0 0.5000 0.0000

3 1√
5

−1 + 2√
5

0.4472 −0.1056

4 1
3 −1

3 0.3333 −0.3333

5 3
2 −

√
5

2 0 0.3820 0.0000

6 1√
5

1 − 2√
5

0.4472 0.1056

7 0 0 0.0000 0.0000

8 1√
5

1√
5

0.4472 0.4472

9 1 −1 1.0000 −1.0000

Table 7.8: Coordinates of point configuration violating Conjecture 7.5.1

1

2

3

4

5

6
7

8

9

s

Figure 7.6: The counter-example with 9 points to Conjecture 7.5.1



Collinear Points Line Containing Points

1234 2x − y = 1

156 2x +
(
1 − √

5
)

y = 3 − √
5

178 x − y = 0

257 y = 0

269 2x + y = 1

359 2x −
(
1 − √

5
)

y = 3 − √
5

368 x = 1√
5

458 2x −
(
7 − 3

√
5
)

y = 3 − √
5

479 x + y = 0

Table 7.9: Non-trivial collinearities of point configuration violating Conjecture 7.5.1
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Chapter 8

Complete Listing of Hyperplane
Arrangements

8.1 Introduction

This chapter introduces hyperplane arrangements in the Euclidean space. Similar to the
previous chapter on point configurations, we discuss the relation to oriented matroids and
generate complete listings of (abstract) combinatorial types of hyperplane arrangements.

A hyperplane arrangementis a set ofn affine hyperplanes inRd. Its combinatorial type,
which we call itsdissection type(we introduce this notion in analogy to the notion of an
order type of a point configuration), is determined by the relative positions of all cells. We
give a more formal definition in the following section. Dissection types have primarily
been studied ford = 2, where the hyperplanes become lines. For the generation of dis-
section types no direct method is known, instead generalizations and abstractions such as
pseudoline arrangements and wiring diagrams have been used, and early it became clear
that there is a strong relation to order types of point configurations. In fact, in theprojec-
tive case, where point configurations and hyperplane arrangements in projective spacePd

are considered, order types and dissection types fall together and can be viewed as iso-
morphism classes of realizable oriented matroids: consider the illustration of realizable
oriented matroids by sphere arrangements (as introduced in Section 0.1), where spheres
define a projective hyperplane arrangement and their normal vectors a corresponding pro-
jective point configuration. For a “duality principle” in this sense see also [Goo80].

In the following we will consider the Euclidean case, where the relation of order types and
dissection types is not obvious. Indeed, the (Euclidean) order types are generated from the
“projective order types”, i.e., isomorphism classes of oriented matroids, by marking one
element (hyperplane) as an infinity element; ford = 2 this element can be interpreted as
a “line at infinity”. By this, infinity elements play an analogous role for dissection types
as(+ . . . + )-topes for order types: they mark the projective configuration such that its
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embedding in a Euclidean space becomes sufficiently determined.

The realizability problem has been discussed in Chapters 6 and 7. Here we only add
that, in contrast to point configurations, there is a topological abstraction of hyperplane
arrangements which corresponds to general oriented matroids (due to the Topological
Representation Theorem of Folkman and Lawrence [FL78]). There are also abstractions
of point configurations in terms of pseudoconfigurations of points, but these do no cover
all oriented matroids ford ≥ 3 [BLVS+99].

For former work on the generation and classification hyperplane arrangements we refer to
[Rin56, Grü67, Grü72, GP80a, GP84]. Our goal will be to generate complete listings of
abstract dissection types for small numbern of hyperplanes, including degenerate cases
in arbitrary dimensiond. This complete generation of small hyperplane arrangements
is, to our knowledge, the first such catalog, and we believe that it will be of interest to
many researchers as a valuable source for testing conjectures and searching for specific
properties.

8.2 Hyperplane Arrangements and Affine Oriented Ma-
troids

This section discusses the relation of combinatorial types of hyperplane arrangements to
oriented matroids. We will illustrate this relation by sphere arrangements which we have
introduced in Section 0.1.

Consider a hyperplane arrangementQ = {h1, . . . , hn} in Rd. Every hyperplanehe for
e ∈ {1, . . . , n} can be described by a normal vectorve ∈ Rd and a translation given by
ve

d+1 ∈ R such thathe is the set of pointsx ∈ Rd for which
∑d

i=1 v
e
i xi +vd+1 = 0. As we

did for point configurations, we homogenize and introduce a coordinatexd+1 such that∑d
i=1 v

e
i xi + vd+1 becomes the scalar product ofve andx in Rd+1 if we fix xd+1 = 1.

Furthermore, we defineA(Q) to be the matrix of then + 1 column vectors given by
ve ∈ Rd+1 for e ∈ E := {1, . . . , n} ∪ {g}, where the vectorvg ∈ Rd+1 is defined by
v

g
d+1 := 1 andvg

i := 0 otherwise;g ∈ E is a new index element which is called theinfinity
element. The vectorvg will be used to observe whetherxd+1 = 1 may be satisfied (note
that by definition the scalar product ofvg andx ∈ Rd is xd+1). Similar as in Section 0.1
we define forA := A(Q) the set of sign vectorsF (Q) := {sign(AT x) | x ∈ Rd+1},
and we know from Section 0.1 thatF (Q) is the set of covectors of a realizable oriented
matroid. Note that the reorientation class ofF (Q) is independent from the choice ofve

for he, e ∈ E \ g.

8.2.1 Definition (Dissection Type of a Hyperplane Arrangement)Consider a hyper-
plane arrangementQ = {he | e ∈ E \ g} in Rd on a finite ground setE \ g. Define
F (Q) as described above, whereg ∈ E denotes the infinity element. Thedissection type
of Q is defined by a triple(E′,F ′, g′) whereF ′ is a set of sign vectors onE′ andg′ ∈ E′
such that there exists an isomorphism betweenF (Q) andF ′ which mapsg to g′.

The following geometric reasoning may illustrate the relation of hyperplane arrangements
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and oriented matroids further. Similar as for point configurations, a hyperplane arrange-
mentQ = {h1, . . . , hn}, wherehe is a hyperplane inRd, is embedded inRd+1 by fixing
the new coordinate to be 1. Everyhe determines a hyperplaneHe in Rd+1 which contains
he and the origin 0∈ Rd+1. All He intersected with the unit sphereSd lead to a sphere
arrangement, where the orientations of the spheres are not given and may be chosen ar-
bitrarily. This sphere arrangement corresponds to a projective hyperplane arrangement;
for the given Euclidean hyperplane arrangement we have to add information how it was
projected ontoSd, and we can do this by adding an extra sphere with normal vector
(0, . . . , 0, 1) which is specially marked (see Figure 8.1). Hence oriented matroids which

infinity element

Figure 8.1: Hyperplane arrangement and sphere arrangement

are defined by hyperplane arrangements have the special property that one elementg, the
infinity element, is specially marked. The cells in the Euclidean hyperplane arrangement
Q correspond to covectorsX with Xg = +. The dimension of the oriented matroid is
d, unless all spheres (including the sphere of the infinity element) intersect in a common
point, which corresponds to a point “at infinity” in the Euclidean space.

8.2.2 Definition (Affine Oriented Matroid) Let M = (E,F ) be an oriented matroid,
andg ∈ E, whereg is not a loop. Then we call the triple(E,F , g) an affine oriented
matroid.

If in a realizable oriented matroidM of dimensiond some non-loop elementg is marked
as an infinity element, then there exists a representation by ad-dimensional sphere ar-
rangementS where the sphereSg has the normal vector(0, . . . , 0, 1). The hyperplanes in
Rd+1 which contain the spheres ofS \ g define ad-dimensional hyperplane arrangement
by their intersection with the hyperplane of points having a(d + 1)-coordinate equal to 1.
This d-dimensional hyperplane arrangement determinesM up to reorientation and up to
relabeling of the elements distinct from the infinity element.



164 COMPLETE LISTING OF HYPERPLANE ARRANGEMENTS

8.2.3 Definition (Abstract Dissection Type)Two affine oriented matroids(E,F , g),
(E′,F ′, g′) are calledaffine isomorphicif there exists an isomorphism between(E,F )
and(E′,F ′) which identifiesg andg′. We call the equivalence class of affine isomor-
phisms of an affine oriented matroid anabstract dissection type.

If a hyperplane arrangement is non-degenerate, i.e., the hyperplanes are in general po-
sition (which also means that there are no parallel hyperplanes), then the corresponding
acyclic oriented matroid is uniform, and vice versa. We call the abstract dissection types
corresponding to uniform oriented matroidsnon-degenerate abstract dissection types.

8.3 Generation of Abstract Dissection Types

We will generate abstract dissection types using the catalog of oriented matroids which
has been presented in Chapter 6. Considern andd, wheren corresponds to the number
of hyperplanes. As the relation discussed in the previous section introduces an infin-
ity element, we have to consider the list IC(n + 1, r ) of all oriented matroids of rank
r = d + 1 (cf. Definition 0.4.5) up to isomorphism in order to find all abstract dissection
types of arrangements ofn hyperplanes of dimensiond (where the dimension is the one
of the corresponding oriented matroid, so trivial extensions of lower-dimensional hyper-
plane arrangements toRd are not counted for the givend but for the corresponding lower
dimension).

The complete list of abstract dissection types forn hyperplanes inRd is obtained from
IC(n + 1, d + 1) by marking infinity elements in all possible ways and by identifying
affine isomorphic types. For every class in IC(n + 1, d + 1) there aren + 1 choices for
the infinity element.

In terms of oriented matroids, the algorithm is the following:

• Setr := d + 1.

• For every class IC(n + 1, r, c) in IC(n + 1, r ) do:

– Let M be the representative of IC(n + 1, r, c), given by its encodingχ(M).

– For every choice of infinity elemente ∈ E = {1, . . . , n + 1} compute the lex-
icographically maximal chirotope encoding w.r.t. reorientation and relabeling
such thate becomes the last elementn + 1 (cf. Definition 6.2.1).

– Remove multiple entries in the list of these maximal encodings, and output the
resulting list.

Every abstract dissection type belongs to a unique isomorphism class of oriented matroids,
hence every abstract dissection type is generated exactly once.

The numbers of abstract dissection types obtained by computations can be found in Ta-
ble 8.1.
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n + 1 = 2 3 4 5 6 7 8 9 10

d = 1 1 1 1 1 1 1 1 1 1
d = 2 1 3 8 46 790 37 829 4 134 939
d = 3 1 5 27 1 063 1 434 219
d = 4 1 7 71 44 956
d = 5 1 9 156
d = 6 1 11 325
d = 7 1 13 646
d = 8 1 15
d = 9 1

Table 8.1: Number of abstract dissection types

For comparison, Table 8.2 shows corresponding numbers fornon-degeneratedissection
types. The known numbers (see [Rin56]) ford = 2 andn ≤ 7 coincide with the numbers
obtained by our programs.

n + 1 = 2 3 4 5 6 7 8 9 10

d = 1 1 1 1 1 1 1 1 1 1
d = 2 1 1 1 6 43 922 38 612
d = 3 1 1 1 43 20 008
d = 4 1 1 1 922
d = 5 1 1 1 38 612
d = 6 1 1 1
d = 7 1 1 1
d = 8 1 1
d = 9 1

Table 8.2: Number of non-degenerate abstract dissection types

As discussed in Section 6.5, not all oriented matroids are realizable. It has been proved
by Goodman and Pollack [GP80b] that every arrangement of at most eight pseudolines is
stretchable, and any arrangement of nine is stretchable if some four lines meet in a point.
For further comments on the realizability see in Chapters 6 and 7.

We present in Figures 8.2 to 8.4 realizations of abstract dissection types for small instances
in R2, i.e., for arrangements of 2 to 5 hyperplanes (here, all abstract dissection types can
be realized). Degenerate intersections (i.e., points where three or more lines intersect) are
marked; lines without intersection in the drawing are parallel. The trivial types of all lines
parallel correspond to combinatorial types inR1 and are not counted inR2.
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Figure 8.2: The dissection types with 2 and 3 non-parallel hyperplanes inR2

Figure 8.3: The 8 dissection types with 4 non-parallel hyperplanes inR2; only the first is
non-degenerate
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Figure 8.4: The 46 dissection types with 5 non-parallel hyperplanes inR2; only the first 6
are non-degenerate
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[AVL62] G. M. A DEL′SON-VEL′ SKIĬ , E. M. LANDIS: An algorithm for organization
of information,Dokl. Akad. Nauk SSSR146, pp. 263–266 (1962)

[BC87] W. BIENIA , R. CORDOVIL: An axiomatic of non-Radon partitions of ori-
ented matroids,European J. Combin.8 (1), pp. 1–4 (1987)
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Glossary of Notation

Sets: e.g.,R, S, E

|E| cardinality of set
S ⊆ E, S $ E subset, proper subset
2E power set (set of all subsets ofE)

E \ S set difference
R ∩ S, R ∪ S set intersection, set union

E ∪ e etc. denotesE ∪ {e} etc. 21

Sign Vectors: e.g.,X,Y ∈ {−,+, 0}E, F ⊆ {−,+, 0}E

Xe component

XS, X \ S sign vector restricted toS, restricted toE \ S 21
X \ e etc. denotesX \ {e} etc. 21
0 zero vector 21
−X negative (all signs reversed)21

S X signs inS reversed 21
X, X0, X+ andX− support, zero support, positive and negative support21
D(X,Y) separating (or disagreeing) elements21
X � Y, X ≺ Y conformal relation 22
X ≤ 0, X < 0 etc. signs are− or 0, signs are− etc. 33
X ◦ Y composition 21
X ∗ Y orthogonality 33

Matroids: e.g.,M = (E,A)

A flats (closed sets)23
H hyperplanes27
S = spanM(S) span ofS 24
rankM(S), rank(M) rank ofS, rank ofM 26
B bases 24
M \ R deletion minor 29
M/R contraction minor 29
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Oriented Matroids: e.g.,M = (E,F )

F covectors 21
D cocircuits 37
T topes 41
χ chirotope 50
M underlying matroid 24
rankM(X), rank(M) rank of X ∈ F , rank ofM 30
dimM(X), dim(M) dimension ofX ∈ F , dimension ofM 30
F̂ = F ∪ {1}, F̂ (M) set of faces, big face lattice44
Fi set ofi -faces (faces of dimensioni ) 45
fi = |Fi | number ofi -faces 45
M \ R deletion minor 29
M/R contraction minor 29

Classes of Oriented Matroids: e.g., IC(M)

LC(M) relabeling class ofM 57
OC(M) reorientation class ofM 57
IC(M) isomorphism class ofM 57
IC(n, r ) set of all IC(M) with M simple,n = |E| and rankr 100
IC(n, r, c) class in IC(n, r ) at positionc 136

Graphs: e.g.,G = (V(G), E(G))

v ∈ V(G) vertex 55
{v,w} ∈ E(G) edge 55
dG(v, w) combinatorial distance in graphG 55
diam(G) diameter 55
Aut(G) automorphism group55



Subject Index

abstract dissection type, 164
acyclic oriented matroids, 149
acycloid, 58
acycloidal signature, 109

strong, 110
weak, 110

affine oriented matroids, 163
antipode label, 77
antipodes

in cocircuit graphs, 77
in tope graphs, 60

AP-label, 77
AP-labeling problem, 77
associating bijection

in cocircuit graphs, 76
in tope graphs, 56

augmentation, 113
automorphism of graphs, 55

bases, 24
cardinality, 26
exchange property, 26

basis orientations, 49
big face lattice, 44

diamond property, 45

central hyperplane arrangement, 16
chirotopes, 50
co-parallel, 96
co-simple, 96
cocircuit graphs, 75

antipodes, 77
localizations, 120

cocircuits, 37
axioms, 38
determine covectors, 37
modular elimination, 39
strong elimination, 38

coline cycles, 80

colines, 27
coloop, 31
combinatorial polytope type, 155
composition, 21
conformal decomposition, 37
conformal elimination, 22
conformal relation, 19, 22
contraction minors, 29
covectors

axioms, 21
conformal elimination, 22
determined by cocircuits, 37
determined by topes, 42
weak elimination, 22

deletion minors, 29
diameter of a graph, 55
diamond property, 45
dimension

in oriented matroids, 30
disagree, 21
dissection type, 162
distance in graphs, 55
distance of coline cycles, 82
dual, 33

edge class, 60
edges, 55
element, 21
encoding, 135
extension, 100
extreme point, 154

i -face, 45
face lattice, 44

diamond property, 45
facial relation, 19, 22
flat axioms, 23
fundamental cocircuit, 49
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graph, 55
automorphism, 55
cocircuit graph, 75
diameter, 55
distance, 55
isomorphism, 55
tope graph, 55

graph label, 76
ground set, 21

hyperplane arrangements, 161
dissection type, 162

hyperplanes, 27

independent sets, 24
isomorphism of graphs, 55
isomorphism of sets of sign vectors, 57

L1-system, 58
label of a graph, 76
linear, 17
localizations

of cocircuit graphs, 120
of tope graphs, 108
weak localizations, 125

loop, 31, 42

M-label, 77
M-labeling problem, 77
matroid label, 77
matroid polytope, 154
matroids

bases, 24
flat axioms, 23
hyperplane axioms, 27
independent sets, 24
rank, 26
span, 24
underlying matroid, 24
uniform, 28

maximal localization, 115
minors

contraction, 29
deletion, 29

modular, 39
modular cocircuit elimination, 39

negative, 21

negative support, 21

OM-label, 76
OM-labeling problem, 77
OMP, 46
order type, 148
ordered sets, 48
oriented matroid label, 76
oriented matroid program, 46
oriented matroids

acyclic, 149
affine, 163
axioms

cocircuits, 38
covectors, 21
modular cocircuit elimination, 39

big face lattice, 44
chirotopes, 50
cocircuit axioms, 38
covector axioms, 21
defined by a matrix, 16
dimension, 30
extension, 100
face lattice, 44
generation problem, 95
isomorphism checking problem, 101
isomorphism class generation prob-

lem, 96
isomorphism class representation

problem, 101
linear, 17
modular cocircuit elimination, 39
multiple extension reduction prob-

lem, 101
rank, 30
rank 0, 46
rank 1, 46
rank 2, 67
realizable, 17
single element extension, 100
single element extension problem,

101
topes, 41
uniform, 28

orthogonality, 33

parallel, 42
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parallel classes, 42
point configurations, 147

order type, 148
polytopes, 147, 154

combinatorial type, 155
positive support, 21
pseudosphere arrangement, 18

rank
in face lattice, 44
in matroids, 26
in oriented matroids, 30

realizable, 17
relabeling, 57
reorientation, 57
reorientation property, 43
representative, 135

separable tope graphs, 63
separate, 21
shelling property, 43
sign vector, 21
signatures, 107
simple, 57
simplification, 57
single element extension, 100
span, 24
sphere arrangement, 18
strong acycloidal signature, 110
strong cocircuit elimination, 38
support, 21

negative support, 21
positive support, 21
zero support, 21

tope graphs, 55
antipodes, 60
localizations, 108
separable, 63

topes, 41
determine covectors, 42

types of coline cycles, 122

underlying matroid, 24
uniform, 28

vertex label, 76
vertices of graph, 55

vertices of point configuration, 154

weak acycloidal signature, 110
weak elimination, 22
weak localizations, 125

zero support, 21


